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Introduction

Dimensionality reduction is the idea of compressing high-dimensional data into low-dimensional

features that still retain meaningful properties. Then, rather than working in the high-dimensional

space, computations are performed on the low-dimensional representation to save resources.

Figure 1. A visualization of data compression and reconstruction by an autoencoder.

Our work uses a neural-network dimensionality reduction technique known as autoencoding on a

COVID-19 dataset. We then examine three frameworks for predictive modeling in the reduced

latent space:

1. Long Short-Term Memory Neural Network (LSTM)

2. Transformer Neural Network

3. Parametric Latent Space Dynamics Identification (LaSDI)

Encoding Process

Figure 2. Number of nearest neighbors vs MLE intrinsic

dimension

The Intrinsic Dimension (ID) of a dataset is

the minimal number of variables necessary

to express the characteristics of the dataset.

This provides a lower bound on the number

of latent variables we we may attempt to

compress into.

To approximate this value, we

use a k-nearest neighbors algorithm with

maximum likelihood estimation (MLE).

Our results from testing up to 100

nearest neighbors show that the ID is

less than 3.

Figure 3. Encoding Dimension vs Relative Reconstruction Error

for Autoencoder and PCA

We record the relative mean squared er-

ror between the original data and recon-

structed outputs from:

1. An autoencoder

2. Principal Component Analysis (PCA), a

linear dimensionality reduction method.

For this dataset, autoencoders incur less

error than PCA for encoding into compu-

tationally tractable dimensions.

Dynamics Prediction Methods

Long Short-Term Memory Network (LSTM)

Figure 4. Typical LSTM memory cell

LSTMs are a type of recurrent neural network (RNN)

designed to better capture long-term dependencies

in sequence prediction tasks.

Traditional RNNs can only remember and use

the most recently predicted value of the sequence,

so they struggle to predict extended sequences.

In contrast, LSTMs implement memory

cell structures that store a range of previously

predicted values. This increases interaction

between past and current predictions.

Figure 5. Transformer architecture

Transformer Neural Network

The transformer architecture allows full interaction

between all parts of the sequence.

This is achieved through positional encoding, which

assigns a unique value to each position in the se-

quence. We used the following formulas for posi-

tional encoding:

PE(pos,2i) = sin
(

pos/100002i/dmodel

)
PE(pos,2i+1) = cos

(
pos/100002i/dmodel

)
where pos is the position and i is the dimension.

Then, an attention layer identifies previous positions

that are most pertinent to the current prediction.

Parametric LaSDI

Figure 6. LaSDI trajectory estimations

LaSDI finds a dynamical system ˙̂u(t) = f (û(t)) whose
solution best matches the latent space trajectory data.

First, compressed data is arranged in a matrix Û
where each row represents a time step and each

column an encoded feature:

Û =

 û0(t0) û1(t0) û2(t0)
... ... ...

û0(tN ) û1(tN ) û2(tN )


Then, the time derivative,

˙̂
U is approximated using

a finite time difference method.

Next, to estimate f (û(t)), we define a library of functions Θ(Û (t)). We include sine, cosine, exp,

and polynomial terms up to the second order.

Finally, we find the coefficient matrix, Ξ, which allows us to approximate f(û(t)) = Θ(Û (t))Ξ by

solving the following optimization:

argmin
Ξ∈Rnl×3

∥∥∥ ˙̂
U (t) − Θ(Û (t))Ξ

∥∥∥2

Results

For each method, we predicted within the latent space, then decoded the results back into the

original variables. We then calculate the relative error for each predicted week.

Figure 7. Predictions for the first latent variable Figure 8. Decoded predictions, new deaths

Figure 9. Prediction error for first 5 weeks Figure 10. Prediction error for first 28 weeks

Conclusions + Further Research

Our analysis of latent space dynamics prediction for COVID-19 data demonstrates that LaSDI is

a viable method for short-term prediction in ”real-world” dynamical systems while LSTMs are

most suited for predicting long-term trends.

LaSDI can provide accurate short-term predictions of disease spread, hospitalization rates, and

other critical factors. This can inform life-saving policies during a future health crisis.

Our results highlight the importance of selecting appropriate models for specific types of

systems. Transformers, while effective in a wide range of applications, may not be suitable for

predicting the short-term evolution of continuous, low-dimensional dynamical systems.

Further research in this area includes studying different autoencoder architectures, improving

models for long-term predictions, and applying our methods to other real-world dynamical systems.
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