Counting Filling Pairs on Surfaces Geor Ellie Cirillo¹, Jiamin Li², Alice Ponte³ Mentors: Dr. Wade Bloomquist³ and Dr. Dan Margalit³

Filling Curves on a Surface

- Two curves are **filling** if they cut the surface into a collection of disks.
- If a pair of filling curves intersects minimally, it cuts the surface into a *single* disk.

Main Question

How many distinct filling pairs of minimally intersecting curves are on a genus g surface?

n(g) = # distinct filling pairs

Building Surfaces with Filling Pairs of Curves

Theorem

n(3) = 12 n(4) = 672

Technique: pairs of curves ~ permutations

Note: only 8 pairs are **decomposable**.

Upper Bound for Genus g Surface

 $2^{2g-2}(4g-5)(2g-3)! - 2(2g-1)[2 \cdot 2^{2g-4} \cdot (2g)]$ $-4)! + (2(2g - 1) - 6)^2 \cdot 2^{2g - 5}(2g - 5)!]$

Distance in the Curve Graph

Palaparthi - Mahanta (2021) (a,b) filling pair $\rightarrow d(a,T_{h}(a)) = 4$

Corollary

We have new examples of distance 4 curves.

> Thank you to Georgia Tech for the opportunity, and to the NSF and SSP.

