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What are Erdős-Szekeres Polynomials?

Erdős-Szekeres Polynomials are polynomials of the form
n∏

j=1
(1 − zsj) = a0 + a1z + ... + adzd

where the sj ’s are positive integers. We define the L2 norm by

||P (z)||2 =

(
1

2π

∫ 2π

0
|P (z)|2 dz

)1/2

=
√

a2
0 + a2

1 + ... + a2
d

.

Example: Let P (z) = (1 − z)(1 − z2)(1 − z3)(1 − z4) = z10 − z9 − z8 + 2z5 − z2 − z + 1

1. deg(P ) = 1 + 2 + 3 + 4 = 10
2. ||P (z)||2 =

√
10

3. Each ak is the difference between the number of ways to choose an even and odd number of

sj terms which sum to k

Plotting the norms

In order to estimate the distribution of L2 norms for fixed n, we generate random polynomials

using a Monte Carlo algorithm to sample from the set of all possible exponents and then plot the

nth root of the L2 norms squared.

While this is only a single fixed value of n with exponents bounded by M, the bell curve above is

observed for other values of n ≤ M as well.

What canwe say about the distribution?

Let A2(M, n) be the average of the L2 norm square of Erdős-Szekeres polynomials from all n-
tuples (s1, · · · , sn) such that 1 ≤ sj ≤ M for 1 ≤ j ≤ n. Let V2(M, n) be the associated variance.

Analytic Results

Theorem 1

For fixed n we have

lim
M→∞

A2(M, n) = 2n and lim
M→∞

V2(M, n) = 0.

Theorem 2

Write V2(M, n) =
(
B2(M, n) − A2(M, n)2

)1/2
. For k ≥ 1, let nk ≥ 1 and Mk ≥ 1. Assume that

nk → ∞ and Mk → ∞ as k → ∞, in such a way that

lim
k→∞

M
1/nk
k = ρ ∈ [1, ∞].

1. Let s0 ∈ (π, 3
2π) be the unique root in (π, 3

2π) of the equation tan s = s. Then,

lim
k→∞

A2(Mk, nk)1/nk = 2 max
{

1,
1
ρ

(
1 − sin s0

s0

)}
2.

lim
k→∞

B2(Mk, nk)1/nk = max
{

8
ρ2,

6
ρ
, 4
}

.

3. If ρ < 3
2, then

lim
k→∞

V2(Mk, nk)1/nk =

√
max

{
8
ρ2,

6
ρ

}
.

A Sketch of the Proof

We first change the order of summation and integration. Then we study the asymptotic behavior

of the integral through the following methods:

1. Hölder’s inequality

2. Fatou’s lemma

3. Results from uniform distribution

4. Bounding and estimating the integrand on different domains
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Minimizing the L2 Norm

Given an n, what is the minimum L2 norm?

What polynomial has this norm?

We used an algorithm adapted from Maltby [2] and a greedy algorithm to try and answer these

questions.

MaltbyAlgorithm

Suppose that {sj} = {a, b}.

0 < a < b < a + b =⇒ P ({a, b} ; z) = 1 − za − zb + za+b =⇒ ‖P ({a, b} ; z)‖2 = 2
0 < a = b < a + b =⇒ P ({a, b}; z) = 1 − 2za + za+b =⇒ ‖P ({a, b} ; z)‖2 =

√
6

AGreedyAlgorithm

Given an n-tuple, Sn = (s1, s2...sn) of exponents, the coefficient of zk is given by

C(Sn, k) = C(Sn−1, k) − C(Sn−1, k − sn)
Using this recurrence we express the L2 norm of P (Sn; z) as,

||P (Sn; z)||22 = 2||P (Sn−1; z)||22 − 2
D∑

k=0
C(Sn−1, k)C(Sn−1, k − sn)

Where D =
∑n−1

i=1 si. Here is a plot of the growth of the L2 norm of the polynomials generated
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