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Objectives

We study acyclic orientations (AOs) of complete
multipartite graphs. Our results include:
• Explicit formulas for the number of AOs of

complete multipartite graphs (asked in [1]).
• Relating AOs of complete bipartite graphs to

permutations with a prescribed exceedance set.

Introduction

An orientation of an undirected graph is an as-
signment of a direction to each of its edges. For
graph G, let A(G) be the set of orientations which
contain no directed cycle.

∈ A(G)̸∈ A(G)

We denote by A(G, q) the set of AOs of G with
unique sink at a chosen vertex q:

q

q q

∈ A(G, q)̸∈ A(G, q)

Enumerating these sets is of interest in the mathe-
matical community:
• |A(G)| = |χG(−1)| = TG(2, 0) (TG is Tutte poly.)
• |A(G, q)| = |a1(χG)| = TG(1, 0)
• #P-complete, unknown approximability
as well as in other fields of study:
• |A(G, q)| counts branched polymers [3].
• |A(G, q)| gives the Ursell function of statistical

physics [2].

Complete Multipartite Graphs

The complete bipartite graph Km,n is the
graph on two vertex sets whose edges are all those
between the vertex sets:

b1 b2

g1 g2 g3

m = 2

n = 3

K2,3

Analogously, the complete N -partite graph Kn1,...,nN

has N vertex sets, and all edges between vertex sets:

p1 p2

b1

b2

g2

g1

K2,2,2

Question: What is |A(Km,n)|? |A(Kn1,...,nN
)|?

Partially Unlabeled

It is useful to instead consider K ′m,n, the complete
bipartite graph with vertices in the n-set unlabeled:

b1 b2

g g g

Now,
∣∣∣A(K ′m,n)

∣∣∣ can be counted (up to isomorphism
within unlabeled vertex set) by counting ‘canonical’
topological sorts of the vertices:

b1 b2

g g g

ggg → gb1gb2g

This idea is easily generalized to K ′n1,...,nN
.

Partially Unlabeled Result
We have the following counts for AOs of partially unlabeled complete multipartite graphs:∣∣∣A(K ′n1,...,nN

)
∣∣∣ =

1 +
N∑

i=2
ni

n1  ∑N
i=2 ni

n2, . . . , nN

 in particular
∣∣∣A(K ′m,n)

∣∣∣ = (1 + n)m

Relabeling

Now, we might hope to count |A(Km,n)| by counting
the ways to relabel the unlabeled vertices in K ′m,n.
Purely counting the number of orientation/labeling
pairs gives a multiset

|L| = n!(1 + n)m

But this overcounts AOs of Km,n. e.g.
b1 b2

g1 g2

b1 b2

g2 g1

=

Inclusion-Exclusion

We can count the number of ‘non-canonical’ orien-
tation/labeling pairs in L. Subtracting these out
would yield |A(Km,n)| as desired.
We can achieve this with the principle of inclusion-
exclusion. Letting the ‘bad sets’ be

Li = {(O, ℓ) ∈ L | gi non-canonical}
it can be shown that:∑
J⊆[n−1]
|J |=j

∣∣∣∣∣∣
∩

i∈J

Li

∣∣∣∣∣∣ = (1 + n− j)m(n− j)!S(n, n− j)

Explicit formula for Km,n

|A(Km,n)| =
n−1∑
j=0

(−1)j · (1 + n− j)m · (n− j)! · S(n, n− j)

and a similar formula can be given for Kn1,...,nN
in terms of N − 1 sums over parts n2, . . . , nN .

AOs and Permutations

The exceedance set of a permutation σ ∈ Sm+n

is ex(σ) = {i | σ(i) > i}. Then, letting
T (m, n) =

{
σ ∈ Sm+n | ex(σ) = {1, . . . , m}

}
we give a simple bijection between A(Km+1,n, q)
(with q in the (m + 1)-set) and T (m, n):
1 Remove q, giving the set of AOs of Km,n with no
sink in the m-set.

2 Effectively equate (canonical) topological sorts
with (canonical) cycle decompositions.

For example, if m = 3 and n = 3:
b1 b2 b3

g1 g2 g3

gives the topological sort/cycle decomposition
b3g2b1b2g3g1 ←→ 351264 ←→ (35)(1264)

Conclusions/Future Questions

Our formulas gives ways to quickly compute the
number of AOs for complete multipartite graphs.
The idea of first considering a partially unlabeled
graph might be useful in other problems.
• Which G maximize |A(G)| for fixed |V |, |E|? [1]
• Similar bijection for complete multipartite case?
• Count #AOs for grid graphs and hypercubes?
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