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Abstract

Linking number is a tool used to measure how ”linked” two components of
a link or string link are or, rather, how hard it is to separate them. We use Mil-
nor’s invariants, which are higher order versions of linking number, to explore
how close C(2)/P(2) is to being abelian (in other words, the solvability of this
group). This project uses two methods to calculate the Milnor’s invariants of
string link commutators within this group. The first method involves generat-
ing surfaces bounded by each component of the string link, then taking their
intersections in an iterative process. The second method involves deriving Mil-
nor’s invariants using group theoretic techniques using the fundamental group
of the link complement. There are a few cases where the Milnor’s invariants of
a string link are always zero, meaning the components are trivially linked and
concordant to the unlink. For more complex links, there may be non-zero Mil-
nor’s invariants. Our research focuses on the Milnor’s invariants of commutators
in the string link group and when they are zero or non-zero. We proved that
there is a class of string links for which the Milnor’s invariants are always zero.
We also developed several tools for more quickly calculating Milnor’s invariants
in non-trivial examples. In further research, we hope to prove that C(2)/P(2)
is not solvable by showing that there are non-trivial commutators of arbitrary
length in C(2)/P(2).

1 Introduction

As far back as the 17th century, mathematicians have worked to comprehend the
“shape” and features of spaces. They developed ideas which lead to the concept of
topology: the study of the shape of spaces. This paper focuses on low-dimensional
topology (dimension less than or equal to 4). In particular, we discuss knots and links
and the spaces in which they exist.

Definition 1.1. A knot is a smooth embedding σ : S1 → S3.

An n-component link is a set of multiple knots, often linked together but never
intersecting. Formally,

Definition 1.2. An n-component link is a smooth embedding σ :
⊔
n S

1 → S3.

There is no n-component link group. Because the connected sum operation for
knots is not well defined on links, more work is needed to define a group operation. We
overcome this by presenting links as string links. String links are a generalization of
pure braids; they are very similar to braids but are allowed to loop back on themselves
in ways that pure braids cannot.
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Definition 1.3. [1] Let D be the unit disk, I the unit interval, and {p1, p2, . . . , pk}
be n points in the interior of D. An n-component string link is a smooth, proper
embedding σ :

⊔
n I → D × I such that

σ|Ii(0) = {pi} × {0}
σ|Ii(1) = {pi} × {1}

We can turn a link into a string link by first adding an oriented disk to a link in-
tersecting each component exactly once with all intersections positive and then slicing
the disk to pull the link into a braid-like presentation.

Example 1.1. Turning the Hopf link into a string link.

Similarly, the closure of a string link is a link.

Definition 1.4. Let c be a string link. Then let ĉ be the closure of c, formed by
attaching arcs to the top and bottom of the string link.

String links can be formed by stacking. The following example is an intuitive
description of the composition process:

Example 1.2. Let α1, α2 be string links. Then, denote the composition of α1 and α2

by α1·α2, formed by stacking α1 on top of α2 and connecting the two string links, as
shown below.

Formally,

Definition 1.5. Let σ :
⊔
n I → D × I and γ :

⊔
n I → D × I be string links. We

define σ· γ as the embedding λ :
⊔
n I → D × I where

λ|Ii(x) = σ|Ii(2x) 0 ≤ x ≤ 1

2

λ|Ii(x) = γ|Ii(2x�1)
1

2
≤ x ≤ 1
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The last stipulation for forming a string link group is that two string links are
considered equal in the group if and only if those string links are concordant; that is,
concordance is an equivalence relation on the group.

Definition 1.6. [1] Two n-component string links σ1, σ2 are concordant if there is a
smooth embedding H :

⊔
n(I × I)→ B3 × I such that:

H|(Fn I�f0g) = σ1

H|(Fn I�f1g) = σ2

H|(Fn ∂I�I) = j0 × idI

where j0 :
⊔
n ∂I → S2.

This provides us with inverses; two elements a, a�1 are inverses if aa�1 is concor-
dant to the identity in the group: the unlink.

With these definitions in place, we can begin discussing the group of interest to us:
C(n)/Ncl(P(n)). C(n) refers to the group of n-component string links under stacking,
where string links are equivalent under concordance. P(n) is the pure braid subgroup
of C(n). Briefly, we will review the definition of pure braids for those unfamiliar.

Pure braids on n strands are a subgroup of the braid group on n strands, and
subsequently, a subgroup of the string link concordance group. Pure braids cannot
loop back on themselves in the way that string links may, though. One can think of a
pure braid as a parametrization of a falling object, where each strand must continually
move down as it moves horizontally. Formally,

Definition 1.7. Let D be the unit disk, I the unit interval, and {p1, p2, . . . , pk} be n
points in the interior of D. An n-component pure braid is a smooth, proper embedding
σ :

⊔
n I → D × I such that

σ|Ii(0) = {pi} × {0}
σ|Ii(1) = {pi} × {1}
σ|Ii(x) = {qi,x} × {x}

where qi,x ∈ D.

A braid can be turned into a link by taking its closure (attaching arcs at the top
and bottom).

Figure 1: Turning a braid into a link by attaching arcs/strings at the top and bottom

The stacking operation for P(n) is defined in the same way as the stacking oper-
ation in C(n). With these groups in mind, we can move to the primary focus of our
study: whether C(n)/Ncl(P(n)) is solvable. To understand solvability, we will need
to discuss two group-theoretic concepts: commutators and the derived series.
C(n) is known to be non-abelian because it contains Ncl(P(n)) as a subgroup.

Kuzbary [1] shows that it is still non-abelian if you quotient out Ncl(P(n)).
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Definition 1.8. For a, b ∈ G, the commutator of a and b, written [a, b], is the element
aba�1b�1 ∈ G.

As the name implies, commutators give a sense of which elements in a group
commute. If [a, b] = idG, then ab = ba, i.e. a and b commute. In an abelian group, all
commutators are equal to the identity, so they do not provide much information. In
a non-abelian group, however, looking at iterations of commutators can help measure
just how close to being abelian a non-abelian group is.

To this end, we employ the concept of a derived series for a group G, a sequence
of nested commutator subgroups.

Definition 1.9. The commutator subgroup [G,G] is the set of all commutators in G.
Formally, [G,G] = {aba�1b�1|a, b ∈ G}

Definition 1.10. The derived series of G is a sequence of commutator subgroups
defined recursively as:

G(0) = G n = 0

G(n) = [G(n�1), G(n�1)] n ≥ 1

With this, we can define solvability.

Definition 1.11. A group G is solvable if G(n) = 1 for some n ≥ 1. In other words,
G is solvable if some member of its derived series is the trivial subgroup.

Recently, Kuzbary showed that the group we are working with is non-Abelian [1].
That is,

Theorem 1.1. C(n)/Ncl(P(n)) is non-abelian for every n.

In our investigation, we sought to expand this result and prove that C(n)/Ncl(P(n))
is not solvable. In pursuit of this goal, our team utilized two distinct methodologies,
assessing string link commutators using surface systems and using the fundamen-
tal group of the string link complement. The focus of the project narrowed as we
worked only in C(n)/Ncl(P(n)) for n = 2. Conveniently, this group is C(2)/P(2),
since P(∈) = Ncl(P(∈)), which is not true for n > 2. P(n) is not a normal subgroup
of C(n). Considering only this group, closures of two-strand pure braids may have a
nonzero linking number.

Linking number involves assigning a value (either 1 or −1) to each crossing. As-
sume that an oriented link with two components, K and J , has a standard projection.
If a particular crossing is right-handed – J crosses under K from the right to the left
– then the sign of that crossing is 1. But if J crosses under K from the left to the
right, the sign of said crossing is −1, shown in figure 2.

Figure 2: A left hand crossing (left) and right hand crossing (right)

Definition 1.12. The linking number of K and J , denoted `k(K,J), is the sum of
the signs of all the crossings where Kpasses under J.

Note that linking number is symmetric. That is, `k(J,K) = `k(K,J) for two
components J,K.

Milnor’s invariants give us a natural way to detect subtle higher order linking
data. If given an oriented, ordered link L, the Milnor’s invariants of L are integers
corresponding to a multi-index which can be computed in multiple ways.
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In the following sections, we will explore the two methods used to compute Milnor’s
invariants. With the group presentation method, we use fundamental groups and
Magnus expansions to help compute Milnor’s invariants. With surface systems, we
construct figures from which we can calculate Milnor’s invariants as combinations of
linking numbers.

2 Computing Milnor’s Invariants Using Group Pre-
sentations

One way to calculate the Milnor’s invariants for a string link is to consider the struc-
ture of the fundamental group of the link complement.

Definition 2.1. [2] Given a link L, the fundamental group of its complement π1(S3\v(L), p)
is the set of all homotopy classes [f ] of loops f : I → S3\v(L) such that

f(0) = f(1) = p

for some fixed p ∈ S3\v(L). The group operation is concatenation of loops.

Essentially, this is a group of all loops in the space around L which begin and end
at a fixed point p. Elements of this group are considered equivalent under homotopy.
This means that if one loop can be deformed into another without crossing the link,
then those loops are equivalent.

As it happens, there is an easy way to present this fundamental group using the
diagram for the link. To each arc in the diagram we assign a generator of the group.
This generator is a loop going around that arc oriented so that it has positive linking
number with the component it links. Figure 3 shows three such generators near a
crossing. It is always assumed that such loops are based at a point p far above
the link, but often we will only draw a portion directly under the link diagram for
simplicity.

Once generators are determined, we can use crossings to deduce relations for the
group. In figure 3, we see a right hand crossing with generators a, b, and c.

Figure 3: Four fundamental group generators near a crossing

Imagine concatenating these generators to create the loop bca�1c�1, shown in
figure 4. This loop need only be based at P at its start and end, so we can homotope
other meeting points for the generators away from P , as shown. The resulting loop
can be pulled out from under the crossing and is in fact homotopic to the constant
loop at the base point. Thus, this is the identity in the fundamental group and we
can write bca�1c�1 = idG.
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Figure 4: Four fundamental group generators concatenated

This process can be repeated to find a relation for every crossing. Along with the
list of generators, this forms a presentation for the fundamental group known as the
Wirtinger presentation.

We will try and write the longitude of a component of our link as an element of
the fundamental group of the link complement, and we will use this presentation to
do so. This longitude can then be used to directly compute the Milnor’s invariants of
the link.

2.1 0-framed Longitudes

As will be discussed in section 3, each knot bounds many surfaces. One such surface
can be found algorithmically using the Seifert algorithm. We will use this fact to
define the 0-framed longitude for a knot.

Definition 2.2. The 0-framed longitude of a knot K is the curve formed by the
intersection of a Seifert surface for K with the boundary torus ∂(S3\v(K)).

This longitude can be written as a word in the fundamental group of the link
complement. We would like to write this longitude using only one generator from
each component. If we can do so, it is possible to use a mapping known as the
Magnus expansion to directly compute Milnor’s invariants for the link.

Definition 2.3. The Magnus expansion is a mapping from the free group with n
generators to the ring of power series in n noncommuting variables such that

• xi → 1 +Xi

• x�1i → 1−Xi +X2
i −X3

i + . . .

The Magnus expansion of a word w made from n generators can be written M(w) =
1 +

∑
I εIX

I where the sum is taken over all possible multi-indices I = (i1, . . . , im)
where 1 ≤ ij ≤ n. In this notation XI = Xi1 . . . Xim . This notation will prove useful
for the next definition.

For this group presentation method, the definition of Milnor’s invariants we will
use depends on this Magnus expansion.

Definition 2.4. [3] Let L be an n-component link and G = (π(S3\v(L), p), ∗) be
the fundamental group of its complement. Let lik be the ithk longitude of L and let
Rk(lik ) be its image in G/Gk. Using the notation from the previous definition, let
M(Rk(lik )) = 1 +

∑
I εIX

I . The Milnor’s invariants of L are integers µ(i1, . . . , ik)
where µ(i1, . . . , ik) = εI(Rk(lik )).

This definition gives us a useful way of calculating Milnor’s invariants of a link
with reference to the fundamental group of its complement. The major difficulty for
this approach is getting the longitude in a form where it uses only one generator
from each component. As it happens, some generators in the Wirtinger presentation
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are redundant, so it is possible to reduce the longitude using only information from
crossing relations. However, this is often not enough. The next steps involve modding
out the fundamental group by elements of its lower central series.

Definition 2.5. The lower central series of a group G is the sequence of nested
commutator subgroups G1 D G2 D G3 D . . . such that G1 = G and Gn = [G,Gn�1]
for n ≥ 2.

Rewriting the 0-framed longitude of a link component mod Gq and taking its
Magnus expansion will yield some power series. If that power series has a non-constant
term, then the coefficient of the first non-constant term is the first non-vanishing
Milnor’s invariant for the link. Milnor’s invariants are defined as follows [1].

Definition 2.6. Let L ⊂ S3 be an oriented, ordered link and let G = π1(S3\v(L), ∗)
be the fundamental group of its complement. The Milnor’s invariants of L are integers
µ̄(i1...ik) each corresponding to a multi-index (i1, ..., ik) where i + j ∈ {1, ..., n}. Let
lik be the ik

th longitude of L and let Rk(lik ) be its image in G/Gk. Expressed in the
generators found in Theorem 2.36 of Kuzbary [1], this group element corresponds to
a word w in meridians x1, ..., xn. The Magnus expansion of this word is M(w) =
1 + ΣI2IX

I where the sum is taken over all possible multi-indices I = (j1, ..., jm) and
XI is shorthand for xj1 ....Xjm . Then,

µ̄((i1...ik) =∈I (Rk(lik ))

this integer is well-defined if all the Milnor’s invariants of order less than k are 0.
Otherwise, this integer is defined to be the residue class modulo

∆ = gcd{µ̄(Ĩ)}

where Ĩ is obtained from i1, ..., ik by removing one index and cyclically permuting the
other indices.

Many of our results deal with this rewriting process and attempt to make it easier,
giving us tools to prove that there exist string link commutators of arbitrary size
with non-zero Milnor’s invariants. Since Milnor’s invariants are defined modulo other
Milnor’s invariants of smaller weight, we are only concerned with the first non-zero
Milnor’s invariants.

3 Computing Milnor’s Invariants Using Surface Sys-
tems

3.1 Seifert Surfaces

Seifert’s theorem states that every knot is the boundary of an orientable surface [4].

Definition 3.1. Let k be a knot and S be an oriented surface such that the boundary
of S is k. Then, S is a Seifert surface for k.

Seifert’s algorithm for generating a Seifert surface for a given knot k is as follows.

1. Orient the knot k.

2. Resolve each crossing (that is, smooth the knot so it no longer has any crossing)
in a manner that respects the orientation.

3. At the location of each crossing that was smoothed, add a twisted band.
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Example 3.1. Finding a Seifert surface for the trefoil using Seifert’s algorithm.

To compute the Milnor’s invariants of a string link commutator using surface sys-
tems, we will perform a variation on Seifert’s algorithm. Consider the string link
below.

Example 3.2. Finding a Seifert surface for the component c(x).

To find a Seifert surface for the component of the link on the left, we can take
the closure of the string link, then select one knotted section of the component and
perform Seifert’s algorithm as if the knot were closed. We will do this for each knotted
section until the entire component bounds a surface. Then, to ensure that the surface
bounded by this component is disjoint from the second component of the link, we can
add hollow tubes for the other component to pass through in a manner that respects
the orientation of the surface.
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