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An independent set of a graph G = (V, E) is a set of vertices S ⊆ V
such that no two vertices in S share an edge in G.

Example: In the graph on the right hand side, the set {A, C, E} forms
an independent set.

MaximumWeighted Independent Set (MWIS) Problem

Given a graph G = (V, E) and a weight on each vertex, v, denoted w(v).
Find an independent set S ⊆ V that maximizes sum of weights of vertices in S.

In general, finding the MWIS in a graph in NP-Complete. Thus, searching for a polynomial

algorithm for MWIS in general graphs is impractical. However, perhaps special classes of graphs

admit polynomial solutions.

Goal: Find new class of graphs that admit polynomial algorithms for MWIS?

Motivation

In 2022, Fiorini, Joret, Weltge, and Yuditsky give a polynomial algorithm to solve integer programming with

bounded subdeterminants and only two nonzeros entries per row (or column) via a reduction to MWIS with

bounded vertex disjoint odd cycles.

Known Classes of Graphs Admitting Polynomial Algorithm for MWIS

For any integer constant k > 0,

1.) graphs with at most k vertex disjoint odd
cycles admit polynomial algorithms, and
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All vertex sets |Bi| ≤ k + 1 for all i ∈ {1, . . . , 7}
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Graph with three vertex disjoint odd cycles

2.) graphs with treewidth at most k admit
polynomial algorithms.

Tree Decomposition

A graph G = (V, E) has a tree decomposition (T,B) with tree T and a collection of
sets of vertices B such that

there is a mapping between any vertex v ∈ T to a set of vertices in G (called a bag)
Bv ∈ B.

A tree decomposition must have that

every vertex v ∈ V is in some bag Bi ∈ B,
every edge uv ∈ E is contained in a bag Bi
(i.e both u,v are in Bi for some bag Bi ∈ B), and
for any path ijk in T , we have that Bi ∩ Bk ⊆ Bk.

Our Bounded Odd Cycle Tree Decomposition

Let us say that a graph G has a bounded odd cycle tree decomposition (T,B) if for each bag
B ∈ B you can remove a constant k number of vertices, S, from B to get that

G no odd cycle among vertices B \ S, and
for any other bag B′ 6= B, the intersection between bags |B′ ∩ (B \ S)| ≤ 1.

The first rule ensures there are few vertex disjoint odd cycles in any bag B ∈ B. The second
rule ensures that different bags have few vertices in common
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Question: Does the class of graphs with a bounded odd cycle tree decomposi-

tion for a constant k admit polynomial algorithms for MWIS.

Subroutine: Find the maximumweighted independent set in a given bag

Since k is a constant, we can simply guess which vertices are in S of size |S| = k. We can
test all 2k possible subsets of S that can be in our maximum weighted independent set. Both
computations would be polynomial in terms of n.

Try all
(

n
k

)
ways to choose k vertices to be S O(nk)

Check if the graph on vertices B \ S has no odd cycles

and that ∀B′ 6= B, |B′ ∩ (B\S)| ≤ 1 O(n2)
Try all 2k subsets of S that could be in the maximum weighted independent set O(2k)

Find a maximum weight matching in G among vertices B \ S using Ford Fulkerson’s Algorithms O(n3)

Matching is red Independent set is blue

Vertex cover is red

Theorem: For any graph G, I is an inde-
pendent set if an only if V \ I is a vertex
covering, a set of vertices that are incident

to every edge in G.

Egervary’s Theorem: If G has no odd cycles,
the weight of the minimum vertex cover is

equal to the weight of the maximum match-

ing.

Combining both theorems, we get that

(|B| − k) − maximum weight matching = maximum weight independent set

Our subroutine works in O(2knk+5) time. We will reference it as IndSet(B) later.

=

Observations

If we knew which subsets of

each intersection between

bags were in a MWIS, we could

find the MWIS for for the

entire graph

For any given bag, B, if we
knew which subsets of its

intersections were in a MWIS

and we knew the MWIS of the

resulting graph when removing

B, we could find the MWIS of
the entire graph G.

For any given bag, B, if we
knew which set S to use, we
could reduce the intersections

with any other bag B′ to just 1
vertex.

Instead of guessing which of

the single intersection vertices

should be included in our

independent set, we can create

an auxilarly graph which will

store the size of MWIS if you

choose to keep that vertex or

not.
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Calls to IndSet[B], for
given B, in Improved

Algorithm

2
∑

i,j∈V (T ) |Bi∩Bj|

2
∑

i∈V (T ) |Bi∩B|

2
∑

i∈V (T ) 1 if |Bi∩B|6=∅

1 (but bag is now larger)

Dynamic Programming Algorithm for MWIS

Given a graph G = (V, E) and tree decomposition (T,B), we can start by rooting the tree.
Let us define pa(i) = parent of i ∈ V (T ) and similarly ch(i) = child of i. We will also let P (i) be
the set Bi ∩ BP (i).
Table is going to be filled with entries dp[i][x] for all i ∈ V (T ) and x ⊆ P (i) where dp[i][x]
represents the maximum weight independent set where x ⊆ P (i) is in the independent set and
An initial recurrence relation is guessing all possible intersection withBi. It would look something

like dp[i][x] = maxxc⊆P (c) ∀c∈ch(i)

(∑
c∈chi(i) dp[c][xc] + IndSet(B′)

)
But unfortunately, going over all possible xc is time consuming. Choosing S beforehand can reduce
the cases because intersection between bags will be a single vertex. It might still not be polynomial

because a bag can have up to n neighbors and doing test all 2n possible ways to include them in

the independent set is infeasible.

But, it also makes sent there would be quicker solution, since the graph is bipatite after removign

S. Thus, we can use the augmented graph.
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Nullam vel erat at velit convallis laoreet

Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Phasellus

libero enim, gravida sed erat sit amet, scelerisque congue diam. Fusce dapibus dui ut augue pulvinar

iaculis.

First column Second column Third column Fourth

Foo 13.37 384,394 α
Bar 2.17 1,392 β
Baz 3.14 83,742 δ
Qux 7.59 974 γ

Table 1. A table caption.

Donec quis posuere ligula. Nunc feugiat elit a mi malesuada consequat. Sed imperdiet augue ac

nibh aliquet tristique. Aenean eu tortor vulputate, eleifend lorem in, dictum urna. Proin auctor

ante in augue tincidunt tempor. Proin pellentesque vulputate odio, ac gravida nulla posuere

efficitur. Aenean at velit vel dolor blandit molestie. Mauris laoreet commodo quam, non luctus

nibh ullamcorper in. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos

himenaeos.

Nulla varius finibus volutpat. Mauris molestie lorem tincidunt, iaculis libero at, gravida ante.

Phasellus at felis eu neque suscipit suscipit. Integer ullamcorper, dui nec pretium ornare, urna

dolor consequat libero, in feugiat elit lorem euismod lacus. Pellentesque sit amet dolor mollis

Sherif and Hovland (1961), auctor urna non, tempus sem Black (1948).
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