Math 4317, Assignment 1A

§1.1 Sets and Numbers

- 1. Gunning §1.1 Group I Problem 2
- 2. Gunning §1.1 Group I Problem 4
- 3. Gunning §1.1 Group I Problem 5
- 4. Gunning §1.1 Group I Problem 6
- 5. Gunning §1.1 Group I Problem 7
- 6. Gunning §1.1 Group I Problem 8 and Group II Problem 9
- 7. Gunning §1.1 Group II Problem 10
- 8. Gunning §1.1 Group II Problem 11

Monotone Functions

Problems 9-13 assume familiarity with the field properties, order properties, and completeness of the real numbers \mathbb{R} . The properties of the real numbers as a complete ordered field will be discussed in more detail later; see Chapter 1 §2. Your familiarity with \mathbb{R} should be adequate to make sense of these problems on monotone functions.

A function $u : E \to \mathbb{R}$ where $E \subset \mathbb{R}$ is **monotone** if *one* of the following conditions holds:

- (I) $u(x) \le u(y)$ for all $x, y \in E$ with x < y.
- (D) $u(x) \ge u(y)$ for all $x, y \in E$ with x < y.

The function u is said to be (strictly) **increasing** if

u(x) < u(y) for all $x, y \in E$ with x < y.

The function u is said to be (strictly) **decreasing** if

$$u(x) > u(y)$$
 for all $x, y \in E$ with $x < y$.

- 9. Assume a monotone function *u* satisfies (I). This condition is also called **non-decreasing**.
 - (a) Let $x_0 \in \mathbb{R}$ be fixed. Show the set

$$V = \{u(x) : x \in E \text{ and } x > x_0\}$$

is **bounded below** but not necessarily **bounded above**. Note: To show V is **bounded below** you need to show there is a real number ℓ such that $\ell \leq v$ for every $v \in V$. To show V is not necessarily bounded above means to give an explicit example where V is not bounded above, i.e., there is no real number U such that $v \leq U$ for every $v \in V$. The number ℓ is called a **lower bound**. The number U, were such a number to exist, is called an **upper bound**.

- (b) The completeness of the real numbers implies that a *nonempty* set of real numbers which is bounded below has a **greatest lower bound**, that is, a real number ℓ_0 which is a lower bound such that $\ell_0 \geq \ell$ for every lower bound ℓ . Does the set V from the previous part of this problem necessarily have a greatest lower bound? Note: If your answer is "yes," then you should prove it. If your answer is "no," then you should give an example, i.e., counterexample.
- (c) If the set V from the first part of this problem has a greatest lower bound, show the set of lower bounds for V,

$$A = \{\ell : \ell \le v \text{ for all } v \in V\},\$$

is bounded above.

- (d) If the set V from the first part of this problem has a greatest lower bound ℓ_0 , show the least upper bound U_0 of the set A from the previous part satisfies $U_0 \leq \ell_0$.
- 10. (intervals) A set $I \subset \mathbb{R}$ is an **interval** if the following condition holds:

Whenever we have $x, y \in I$ with x < y, then we must have

$$[x, y] = \{\xi \in \mathbb{R} : x \le \xi \le y\} \subset I$$

Show that every interval has exactly one of the following ten forms:

$$\phi$$

$$(-\infty, \infty) = \mathbb{R}$$

$$(-\infty, b) = \{x \in \mathbb{R} : x < b\}$$

$$(-\infty, b] = \{x \in \mathbb{R} : x \le b\}$$

$$(a, \infty) = \{x \in \mathbb{R} : x > a\}$$

$$[a, \infty) = \{x \in \mathbb{R} : x \ge a\}$$

$$(a, b) = \{x \in \mathbb{R} : a < x < b\}$$

$$[a, b) = \{x \in \mathbb{R} : a \le x < b\}$$

$$(a, b] = \{x \in \mathbb{R} : a < x \le b\}$$

$$[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$$

$$[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$$

Hint: Either an interval is bounded below—or it is not. They key is to find the numbers a and/or b.

- 11. Assume $u: I \to \mathbb{R}$ is a monotone non-decreasing function defined on an interval I.
 - (a) If $x_0 \in (a, b) \subset I$, show "the" least upper bound U_0 of $u((-\infty, x_0))$ and "the" greatest lower bound ℓ_0 of $u((x_0, \infty))$ are unique real numbers such that $U_0 \leq \ell_0$.

(b) If the least upper bound U_0 of $u((-\infty, x_0))$ and the greatest lower bound ℓ_0 of $u((x_0, \infty))$ both exist, show that

$$U_0 \le u(x_0) \le \ell_0. \tag{1}$$

Definition If $x_0 \in I$ and *at least one* of the inequalities in (1) is strict, we say x_0 is a **point of discontinuity** of the monotone non-decreasing function u. Note: This definition does not require that both numbers U_0 and ℓ_0 exist.

- 12. Assume $u: I \to \mathbb{R}$ is a monotone non-decreasing function defined on an interval I.
 - (a) If $x_0 \in I$, when is it possible that neither the least upper bound U_0 of $u((-\infty, x_0))$ nor the greatest lower bound ℓ_0 of $u((x_0, \infty))$ exist?
 - (b) If $x_0 \in I$ is a point of discontinuity of u, what are the possible relations between U_0, ℓ_0 , and $u(x_0)$?
- 13. Assume $u: I \to \mathbb{R}$ is a monotone non-decreasing function defined on an interval I. Show the set of discontinuities of u is (at most) countable.

The Cantor-Bernstein Theorem

- 14. Notes on the Cantor-Bernstein theorem, Exercise 2
- 15. Notes on the Cantor-Bernstein theorem, Exercise 3