$\S 1.1$ Sets and Numbers

1. Gunning $\S 1.1$ Group I Problem 2
2. Gunning $\S 1.1$ Group I Problem 4
3. Gunning $\S 1.1$ Group I Problem 5
4. Gunning $\S 1.1$ Group I Problem 6
5. Gunning $\S 1.1$ Group I Problem 7
6. Gunning $\S 1.1$ Group I Problem 8 and Group II Problem 9
7. Gunning $\S 1.1$ Group II Problem 10
8. Gunning $\S 1.1$ Group II Problem 11

Monotone Functions

Problems 9-13 assume familiarity with the field properties, order properties, and completeness of the real numbers \mathbb{R}. The properties of the real numbers as a complete ordered field will be discussed in more detail later; see Chapter $1 \S 2$. Your familiarity with \mathbb{R} should be adequate to make sense of these problems on monotone functions.
A function $u: E \rightarrow \mathbb{R}$ where $E \subset \mathbb{R}$ is monotone if one of the following conditions holds:
(I) $u(x) \leq u(y)$ for all $x, y \in E$ with $x<y$.
(D) $u(x) \geq u(y)$ for all $x, y \in E$ with $x<y$.

The function u is said to be (strictly) increasing if

$$
u(x)<u(y) \text { for all } x, y \in E \text { with } x<y .
$$

The function u is said to be (strictly) decreasing if

$$
u(x)>u(y) \text { for all } x, y \in E \text { with } x<y
$$

9. Assume a monotone function u satisfies (I). This condition is also called non-decreasing.
(a) Let $x_{0} \in \mathbb{R}$ be fixed. Show the set

$$
V=\left\{u(x): x \in E \text { and } x>x_{0}\right\}
$$

is bounded below but not necessarily bounded above. Note: To show V is bounded below you need to show there is a real number ℓ such that $\ell \leq v$ for every $v \in V$. To show V is not necessarily bounded above means to give an explicit example where V is not bounded above, i.e., there is no real number U such that $v \leq U$ for every $v \in V$. The number ℓ is called a lower bound. The number U, were such a number to exist, is called an upper bound.
(b) The completeness of the real numbers implies that a nonempty set of real numbers which is bounded below has a greatest lower bound, that is, a real number ℓ_{0} which is a lower bound such that $\ell_{0} \geq \ell$ for every lower bound ℓ. Does the set V from the previous part of this problem necessarily have a greatest lower bound? Note: If your answer is "yes," then you should prove it. If your answer is "no," then you should give an example, i.e., counterexample.
(c) If the set V from the first part of this problem has a greatest lower bound, show the set of lower bounds for V,

$$
A=\{\ell: \ell \leq v \text { for all } v \in V\}
$$

is bounded above.
(d) If the set V from the first part of this problem has a greatest lower bound ℓ_{0}, show the least upper bound U_{0} of the set A from the previous part satisfies $U_{0} \leq \ell_{0}$.
10. (intervals) A set $I \subset \mathbb{R}$ is an interval if the following condition holds:

Whenever we have $x, y \in I$ with $x<y$, then we must have

$$
[x, y]=\{\xi \in \mathbb{R}: x \leq \xi \leq y\} \subset I
$$

Show that every interval has exactly one of the following ten forms:

$$
\begin{aligned}
\phi & \\
(-\infty, \infty) & =\mathbb{R} \\
(-\infty, b) & =\{x \in \mathbb{R}: x<b\} \\
(-\infty, b] & =\{x \in \mathbb{R}: x \leq b\} \\
(a, \infty) & =\{x \in \mathbb{R}: x>a\} \\
{[a, \infty) } & =\{x \in \mathbb{R}: x \geq a\} \\
(a, b) & =\{x \in \mathbb{R}: a<x<b\} \\
{[a, b) } & =\{x \in \mathbb{R}: a \leq x<b\} \\
(a, b] & =\{x \in \mathbb{R}: a<x \leq b\} \\
{[a, b] } & =\{x \in \mathbb{R}: a \leq x \leq b\}
\end{aligned}
$$

Hint: Either an interval is bounded below - or it is not. They key is to find the numbers a and/or b.
11. Assume $u: I \rightarrow \mathbb{R}$ is a monotone non-decreasing function defined on an interval I.
(a) If $x_{0} \in(a, b) \subset I$, show "the" least upper bound U_{0} of $u\left(\left(-\infty, x_{0}\right)\right)$ and "the" greatest lower bound ℓ_{0} of $u\left(\left(x_{0}, \infty\right)\right)$ are unique real numbers such that $U_{0} \leq \ell_{0}$.
(b) If the least upper bound U_{0} of $u\left(\left(-\infty, x_{0}\right)\right)$ and the greatest lower bound ℓ_{0} of $u\left(\left(x_{0}, \infty\right)\right)$ both exist, show that

$$
\begin{equation*}
U_{0} \leq u\left(x_{0}\right) \leq \ell_{0} \tag{1}
\end{equation*}
$$

Defintion If $x_{0} \in I$ and at least one of the inequalities in (1) is strict, we say x_{0} is a point of discontinuity of the monotone non-decreasing function u. Note: This definition does not require that both numbers U_{0} and ℓ_{0} exist.
12. Assume $u: I \rightarrow \mathbb{R}$ is a monotone non-decreasing function defined on an interval I.
(a) If $x_{0} \in I$, when is it possible that neither the least upper bound U_{0} of $u\left(\left(-\infty, x_{0}\right)\right)$ nor the greatest lower bound ℓ_{0} of $u\left(\left(x_{0}, \infty\right)\right)$ exist?
(b) If $x_{0} \in I$ is a point of discontinuity of u, what are the possible relations between U_{0}, ℓ_{0}, and $u\left(x_{0}\right) ?$
13. Assume $u: I \rightarrow \mathbb{R}$ is a monotone non-decreasing function defined on an interval I. Show the set of discontinuities of u is (at most) countable.

The Cantor-Bernstein Theorem

14. Notes on the Cantor-Bernstein theorem, Exercise 2
15. Notes on the Cantor-Bernstein theorem, Exercise 3
