§1.2 Groups, Rings, Fields

1. A monoid is a set with a binary operation which is associative and which contains an identity element. Show that the identity element in a monoid is unique.
2. Gunning $\S 1.2$ Group I Problem 2
3. Gunning $\S 1.2$ Group I Problem 3
4. A function $\phi: G_{1} \rightarrow G_{2}$ from one group $G_{1}$ to another $G_{2}$ is a homomorphism if $\phi(a b)=\phi(a) \phi(b)$ for every $a, b \in G_{1}$. A bijective homomorphism is called a group isomorphism, and two groups with a group isomorphism between them are said to be isomorphic groups.
(a) Show that the kernel, $\operatorname{ker}(\phi)=\left\{a \in G_{1}: \phi(a)=e\right\}=\phi^{-1}(e)$ where $e$ is the identity element in $G_{2}$, of a homomorphism and the image, $\operatorname{im}(\phi)=\left\{\phi(a): a \in G_{1}\right\}=$ $\phi\left(G_{1}\right)$, of a homomorphism are subgroups of the groups $G_{1}$ and $G_{2}$ respectively.
(b) If $H$ is a subgroup of a group $G$, one can consider the left cosets of $H$ given by

$$
a H=\{a h: h \in H\} \subset G
$$

and the right cosets $H a=\{h a: h \in H\} \subset G$. A subgroup $H$ is called normal if $a H=H a$ for every $a \in G$. If $H$ is a normal subgroup of $G$, then show the set of all (left) cosets $G / H=\{a H: a \in G\}$ with operation $(a H)(b H)=(a b) H$ is a group. This group $G / H$ is called the quotient group of $G$ by (the normal subgroup) $H$.
(c) Show the kernel of a homomorphism is always a normal subgroup.
(d) If $\phi: G_{1} \rightarrow G_{2}$ is a homomorphism, then show $\operatorname{im}(\phi)$ and $G_{1} / \operatorname{ker}(\phi)$ are isomorphic groups. This is called the first homomorphism theorem.
5. Gunning $\S 1.2$ Group I Problem 6
§1.1-2 Sets and Numbers
6. Show that $f: A \rightarrow B$ is injective if and only if there is a function $g: B \rightarrow A$ such that $g \circ f=\operatorname{id}_{A}$.
7. Show that $f: A \rightarrow B$ is surjective if and only if there is a function $g: B \rightarrow A$ such that $f \circ g=\operatorname{id}_{B}$.
8. Given an equivalence relation " $\sim$ " on a set $A$ and the condition $[a] \cap[b] \neq \phi$ where $[\xi]=\{x \in A: x \sim \xi\}$ denotes the equivalence class of $\xi \in A$, show $[a]=[b]$.
9. Given the ordinals $\omega=\mathbb{N}_{0}, \omega+1=\mathbb{N}_{0} \cup\left\{\mathbb{N}_{0}\right\}=\omega \cup\{\omega\}$, and $\omega+2=\omega+1 \cup\{\omega+1\}$, show there is no order preserving bijection $\phi: \omega+2 \rightarrow \omega+1$.
10. Which group properties do $\mathbb{N}$ and $\mathbb{N}_{0}$ satisfy with respect to addition and multiplication?
11. Show $\mathbb{N}_{0} \times \mathbb{N}_{0}=\left\{(a, b): a, b \in \mathbb{N}_{0}\right\}$ is a bimonoid, i.e., a monoid with respect to addition and a monoid with respect to multiplication if

$$
\begin{aligned}
(a, b)+(c, d) & =(a+c, b+d) \\
(a, b)(c, d) & =(a c+b d, a d+b c) .
\end{aligned}
$$

Monotone Functions

We consider again a non-decreasing function $u: I \rightarrow \mathbb{R}$ defined on an interval $I$. Some of the problems below may provide more sophisticated approaches to some of the earlier problems on monotone functions.
12. Assume $x \in(a, b) \subset I$. The greatest lower bound of $u((x, b))$ may be denoted by

$$
u_{+}(x)=\inf u((x, b)) .
$$

The greatest lower bound of a set (which is bounded below) is called the infemum of the set. Similarly, using the term supremum for the least upper bound, we can write

$$
u_{-}(x)=\sup u((a, x)) .
$$

(a) Show $u_{-}(x) \leq u(x) \leq u_{+}(x)$.
(b) Conclude $S(x)=u_{+}(x)-u_{-}(x)$ is a well-defined non-negative function on $(a, b) \subset I$. The value $S(x)$ is called the jump of $u$ at $x$.
(c) Extend the function $S$ to be reasonably defined at all points of $I$.
13. Assume $x \in I$.
(a) Show that if $S(x)=0$, then for any $\epsilon>0$, there is some $\delta>0$ for which

$$
|u(\xi)-u(x)|<\epsilon \quad \text { for } \xi \in I \text { with }|\xi-x|<\delta .
$$

(b) Show that if for any $\epsilon>0$, there is some $\delta>0$ for which

$$
|u(\xi)-u(x)|<\epsilon \quad \text { for } \xi \in I \text { with }|\xi-x|<\delta,
$$

then $S(x)=0$.
14. Assume $[a, b] \subset I$. For each $n \in \mathbb{N}$, set

$$
E_{n}=\left\{x \in[a, b]: S(x) \geq \frac{1}{n}\right\} .
$$

(a) Show

$$
\{x \in[a, b]: S(x)>0\}=\bigcup_{n=1}^{\infty} E_{n}
$$

(b) Show that if $x_{1}, \ldots, x_{k} \in E_{n}$ with $x_{1}<\cdots<x_{k}$, then

$$
\sum_{j=1}^{k} S\left(x_{j}\right) \leq u(b)-u(a) \quad \text { and } \quad k \leq n[u(b)-u(a)]
$$

(c) Show that $\{x \in[a, b]: S(x)>0\}$ is countable.
15. Let $I$ be any nonempty interval. There exist well-defined extended real numbers

$$
\inf I \in[-\infty, \infty) \quad \text { and } \quad \sup I \in(-\infty, \infty]
$$

(a) Show that there exists a sequence of closed subintervals $\left[a_{j}, b_{j}\right] \subset I$ such that

$$
a_{1} \geq a_{2} \geq a_{3} \geq \cdots \quad \text { and } \quad \lim _{j \rightarrow \infty} a_{j}=\inf I
$$

and

$$
b_{1} \leq b_{2} \leq b_{3} \leq \cdots \quad \text { and } \quad \lim _{j \rightarrow \infty} b_{j}=\sup I
$$

(b) Show $\{x \in I: S(x)>0\}$ is countable.

