Math 4317, Assignment 2A

§1.3 Vector Spaces

1. Gunning $\S 1.3$ Group I Problem 1
2. Gunning $\S 1.3$ Group I Problem 6
§1.2 Groups, Rings, Fields
3. Show that $0 a=0$ for any element a in a ring R.
4. Let R be a ring and P a subset of R such that

$$
R=-P \cup\{0\} \cup P=-P \coprod\{0\} \coprod P \quad \text { is a partition }
$$

where $-P=\{-a: a \in P\}$. Show that exactly one of the following holds for every $a \in R$:

1. $a \in-P$,
2. $a=0$,
3. $a \in P$.
4. Let R be a ring and P a subset of R such that for every $a \in R$ exactly one of the following holds:
5. $a \in-P$,
6. $a=0$,
7. $a \in P$
where $-P=\{-a: a \in P\}$. Show

$$
R=-P \cup\{0\} \cup P=-P \coprod\{0\} \coprod P \quad \text { is a partition }
$$

6. Gunning $\S 1.2$ Group II Problem 9
7. Gunning $\S 1.2$ Group II Problem 10
§1.1-2 Sets and Numbers
8. Recall the bimonoid $\mathbb{N}_{0} \times \mathbb{N}_{0}=\left\{(a, b): a, b \in \mathbb{N}_{0}\right\}$ with respect to the operations

$$
\begin{aligned}
(a, b)+(c, d) & =(a+c, b+d) \\
(a, b)(c, d) & =(a c+b d, a d+b c) .
\end{aligned}
$$

Show that

$$
(a, b) \sim(c, d) \quad \Longrightarrow \quad a+d=b+c
$$

defines an equivalence relation on $\mathbb{N}_{0} \times \mathbb{N}_{0}$.
9. Let $\mathbb{Z}=\{0, \pm 1, \pm 2, \pm 3, \ldots\}$ denote the ring of integers and let $\mathbb{Z}^{*}=\{ \pm 1, \pm 2, \pm 3, \ldots\}$ the nonzero elements. Define operations of addition and multiplication in $\mathbb{Z} \times \mathbb{Z}^{*}$ based on the addition and multiplication of fractions you know and the identification

$$
(m, n) \in \mathbb{Z} \times \mathbb{Z}^{*} \quad \longleftrightarrow \frac{m}{n} \in \mathbb{Q} .
$$

What ring properties are satisfied by $\mathbb{Z} \times \mathbb{Z}^{*}$ under these operations?
10. If $\mathcal{C}=\left\{\left(a_{\alpha}, b_{\alpha}\right)\right\}_{\alpha \in \Gamma}$ is a collection of disjoint intervals in the real line \mathbb{R}, then Γ is (at most) countable.

Monotone Functions

11. Show that the sum of two monotone (non-decreasing) functions is monotone (nondecreasing).

Let $u: \mathbb{R} \rightarrow \mathbb{R}$ be a non-decreasing function. Recall that

$$
u_{+}(x)=\inf u((x, b)) \quad \text { and } \quad u_{-}(x)=\sup u((a, x))
$$

are well-defined for each $x \in \mathbb{R}$ and u is continuous at $x \in \mathbb{R}$ if and only if the jump at x given by $S(x)=u_{+}(x)-u_{-}(x)=0$.
12. If u and v are non-decreasing functions on \mathbb{R} and x is a point of discontinuity for u, then x is a point of discontinuity for $u+v$.
13. If u and v are non-decreasing functions on \mathbb{R} and x is a point of continuity for u and v, then x is a point of continuity for $u+v$.
14. Consider $u_{n}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
u_{n}(x)=\left\{\begin{aligned}
-1 / n^{2}, & x<1 / n \\
1 / n^{2}, & x \geq 1 / n
\end{aligned} \quad \text { for } n \in \mathbb{N} .\right.
$$

(a) Plot (draw the graph of)

$$
f_{k}(x)=\sum_{n=1}^{k} u_{n}(x)
$$

for $k=1,2,3,4$.
(b) Does

$$
f(x)=\sum_{n=1}^{\infty} u_{n}(x)
$$

make sense as a non-decreasing function? If so what is the set of discontinuities of f ?

