§1.3 Vector Spaces

- 1. Gunning §1.3 Group I Problem 1
- 2. Gunning §1.3 Group I Problem 6

§1.2 Groups, Rings, Fields

- 3. Show that 0a = 0 for any element a in a ring R.
- 4. Let R be a ring and P a subset of R such that

$$R = -P \cup \{0\} \cup P = -P \coprod \{0\} \coprod P \quad \text{is a partition}$$

where $-P = \{-a : a \in P\}$. Show that exactly one of the following holds for every $a \in R$:

- 1. $a \in -P$, 2. a = 0,
- 3. $a \in P$.
- 5. Let R be a ring and P a subset of R such that for every $a \in R$ exactly one of the following holds:
 - 1. $a \in -P$,
 - 2. a = 0,
 - 3. $a \in P$

where $-P = \{-a : a \in P\}$. Show

$$R = -P \cup \{0\} \cup P = -P \coprod \{0\} \coprod P \quad \text{is a partition}$$

- 6. Gunning §1.2 Group II Problem 9
- 7. Gunning §1.2 Group II Problem 10

§1.1-2 Sets and Numbers

8. Recall the bimonoid $\mathbb{N}_0 \times \mathbb{N}_0 = \{(a, b) : a, b \in \mathbb{N}_0\}$ with respect to the operations

$$(a,b) + (c,d) = (a+c,b+d)$$

 $(a,b)(c,d) = (ac+bd,ad+bc).$

Show that

 $(a,b) \sim (c,d) \implies a+d=b+c$

defines an equivalence relation on $\mathbb{N}_0 \times \mathbb{N}_0$.

9. Let $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \ldots\}$ denote the ring of integers and let $\mathbb{Z}^* = \{\pm 1, \pm 2, \pm 3, \ldots\}$ the nonzero elements. Define operations of addition and multiplication in $\mathbb{Z} \times \mathbb{Z}^*$ based on the addition and multiplication of fractions you know and the identification

$$(m,n) \in \mathbb{Z} \times \mathbb{Z}^* \quad \longleftrightarrow \quad \frac{m}{n} \in \mathbb{Q}.$$

What ring properties are satisfied by $\mathbb{Z} \times \mathbb{Z}^*$ under these operations?

10. If $C = \{(a_{\alpha}, b_{\alpha})\}_{\alpha \in \Gamma}$ is a collection of disjoint intervals in the real line \mathbb{R} , then Γ is (at most) countable.

Monotone Functions

11. Show that the sum of two monotone (non-decreasing) functions is monotone (non-decreasing).

Let $u: \mathbb{R} \to \mathbb{R}$ be a non-decreasing function. Recall that

$$u_{+}(x) = \inf u((x, b))$$
 and $u_{-}(x) = \sup u((a, x))$

are well-defined for each $x \in \mathbb{R}$ and u is continuous at $x \in \mathbb{R}$ if and only if the jump at x given by $S(x) = u_+(x) - u_-(x) = 0$.

- 12. If u and v are non-decreasing functions on \mathbb{R} and x is a point of discontinuity for u, then x is a point of discontinuity for u + v.
- 13. If u and v are non-decreasing functions on \mathbb{R} and x is a point of continuity for u and v, then x is a point of continuity for u + v.
- 14. Consider $u_n : \mathbb{R} \to \mathbb{R}$ by

$$u_n(x) = \begin{cases} -1/n^2, & x < 1/n \\ 1/n^2, & x \ge 1/n \end{cases}$$
 for $n \in \mathbb{N}$.

(a) Plot (draw the graph of)

$$f_k(x) = \sum_{n=1}^k u_n(x)$$

for k = 1, 2, 3, 4.

(b) Does

$$f(x) = \sum_{n=1}^{\infty} u_n(x)$$

make sense as a non-decreasing function? If so what is the set of discontinuities of f?