
Math 4317, Assignment 3B

§1.3 Vector Spaces

For this section (Problems 1, 2, and 3) let V and W be finite dimensional vector spaces
over a field F . As you know, a function T : V → W is linear if

T (av + bw) = aT (v) + bT (w) for all a, b ∈ F and v, w ∈ V .

The collection of all linear transformations from V to W is denoted by L(V → W ). Some
authors use the notation L(V, W ) for the same set.

1. Use the basis theorem (Gunning Chapter 1, §1.3, Theorem 1.7) to prove that every
basis of V has the same number of elements. This number is called the dimension of
V and is denoted dim V .

2. Define the quotient vector space V/W and show

dim V = dim W + dim V/W.

3. If T ∈ L(V → W ), then the following are equivalent:

1. T : V → W is injective.

2. ker(T ) = {v ∈ V : T (v) = 0W} = {0V }.

§1.2 Groups, Rings, Fields

The following terminology is not universal, but the concepts are widely used and similar
terminology is common.

A function (especially a linear function) f : V → F from a vector space V over a field
F into the field F is called a functional (or sometimes just a function in contrast to
an operator; see below).

A linear function L : V → W from one vector space V to another W (assuming they
are both vector spaces over the same field F ) is called a linear transformation or
operator. The set of all linear transformations L : V → W is denoted L(V → W ). In
this context, the images of elements L(v) are often denoted Lv.

4. Show the set of linear transformations L(V → W ) is a vector space over the field F .
(You will need to define operations constituting a group structure on L(V → W ) as well
as a scaling F ×L(V → W ) → L(V → W ).

5. Show L(V → W ) is a ring with respect to composition.



§2.1 Normed Vector Spaces

For this section (Problems 6-13) V and W are normed vector spaces. This means, in
particular, that we require V and W to be vector spaces over the field F = R. As above,
in this context, images L(v) are often denoted Lv.

Consider ‖ · ‖ : L(V → W ) → [0,∞] by

‖L‖ = sup
‖v‖6=0

‖Lv‖

‖v‖
. (1)

This is called the operator norm on L(V → W ).

The set
C0(V → W ) = {L ∈ L(V → W ) : ‖L‖ < ∞}

is called the set of continuous linear operators from V to W . This same set is called
the set of bounded linear operators (or transformations) and is sometimes denoted
by B(V → W ).

6. Find a linear operator L : V → W for some vector spaces V and W such that ‖L‖ = ∞.

7. Show C0(V → W ) is a normed vector space with norm given by (1).

8. Show that given L ∈ C0(V → W ), the following holds for each v0 ∈ V :

For each ǫ > 0, there is some δ for which

‖v − v0‖ < δ =⇒ ‖Lv − Lv0‖ < ǫ.

9. Given L ∈ L(V → W ) such that for each v0 ∈ V there holds:

For each ǫ > 0, there is some δ for which

‖v − v0‖ < δ =⇒ ‖Lv − Lv0‖ < ǫ,

show L ∈ B(V → W ).



Inner Product Spaces: More Structure than a Normed Vector Space

An inner product on a real vector space V is a positive definite, symmetric, bilinear
function

〈 · , · 〉 : V × V → R.

These three properties, in detail, are the following:

(i positive definite) 〈v, v〉 ≥ 0 for all v ∈ V and

〈v, v〉 = 0 if and only if v = 0.

(ii symmetric) 〈v, w〉 = 〈w, v〉 for all v, w ∈ V .

(iii bilinear)

〈av + bw, z〉 = a〈v, z〉 + b〈w, z〉 and 〈v, aw + bz〉 = a〈v, w〉 + b〈v, z〉

for all a, b ∈ R and v, w, z ∈ V .

A real vector space with an inner product is called an inner product space.

10. Show 〈x,y〉 = x · y =
∑n

j=1
xjyj defines an inner product on Rn.

Given any real inner product space V , we set

‖v‖ =
√

〈v, v〉 for v ∈ V . (2)

11. Prove the Cauchy-Schwarz inequality

|〈v, w〉| ≤ ‖v‖‖w‖ for all v, w ∈ V

on any real inner product space.

12. Prove that ‖ · ‖ : V × V → [0,∞) given by (2) is a norm. Thus, every inner product
space is a normed space with the norm defined in (2) which is called the inner product
norm.

13. If V is an inner product space with norm defined by (2), then show

〈v, w〉 =
1

4

(

‖v + w‖2 − ‖v − w‖2
)

.

This is called the polarization identity, and it says that the inner product is deter-
mined completely by the inner product norm.



Open sets in R and ǫ-δ continuty

(We will use this in our study of monotone functions.)

A set U ⊂ R is open if for any x ∈ U , there is some r > 0 such that

(x − r, x + r) ⊂ U.

A set A ⊂ R is said to be closed Ac = R\A is open.

14. (a) Show that an “open interval”

(a, b) = {x ∈ R : a < x < b} ⊂ R
is open.

(b) Show that any union of open sets is open. Hint: Let {Uα}α∈Γ be any collection of
open sets in R (indexed by Γ), and show

⋃

α∈Γ

Uα = {x ∈ R : x ∈ Uα for some α ∈ Γ}

is open.

(c) Show that a “closed interval”

[a, b] = {x ∈ R : a ≤ x ≤ b} ⊂ R
is closed.

Definition (ǫ-δ continuity) Given an open set U ⊂ R and a real valued function u : U → R,
we say u is continuous at x0 ∈ U if the following condition holds:

For each ǫ > 0, there is some δ > 0 such that

|x − x0| < δ =⇒ |u(x) − u(x0)| < ǫ.

The same function is said to be continuous on U (or just continuous) if u is continuous
at every x0 ∈ U . The set of all continuous real valued functions with domain U is
denoted C0(U).

15. (a) Show C0(U) is a vector space (over the reals).

(b) Let u : [a, b] → R be a real valued function defined on the closed interval [a, b].
Give a reasonable ǫ-δ definition of what it should mean for u to be continuous at
x0 ∈ [a, b]. (The point is to deal with the endpoints a and b.)

(c) Let u : E → R be a real valued function defined on any set E ⊂ R. Give a
reasonable ǫ-δ definition of what it should mean for u to be continous on E.


