
Math 4317, Assignment 4A

§1.3 Vector Spaces

If V and W be finite dimensional vector spaces over a field F , then V and W are
isomorphic if there is a surjective linear transformation T : V → W .

1. Given finite dimensional vector spaces V and W and a linear tranformation T : V → W ,
show that V/ Ker(T ) and T (V ) are isomorphic and

dim V = dim Ker(T ) + dim Im(T ).

Recall that the set Im(T ) is also denoted T (V ).

2. Gunning §1.3 Group I Problem 4

§2.1 Normed Vector Spaces

3. Gunning §2.1 Group I Problem 2

4. Gunning §2.1 Group I Problem 3

5. Gunning §2.1 Group I Problem 4

6. Gunning §2.1 Group II Problem 5

7. Gunning §2.1 Group II Problem 7

§2.2 Metric Spaces: Less Structure than a Normed Vector Space

An metric space is a set X together with a function d : X ×X → [0,∞) satisfying the
following properties:

(i positive definite) d(x, y) = 0 if and only if x = y.

(ii symmetric) d(x, y) = d(y, x) for all x, y ∈ X.

(iii triangle inequality) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

The function d : X×X → [0,∞) is called a distance function or sometimes a metric.

Note that a metric space is not required to be a vector space, but may be just a set with
no particular algebraic structure. Recall that a norm was also positive definite and so
was an inner product. However, all three of these properties with the same names have
different formulations. If we wish to distinguish them one from another, we may use the
names:

positive definite property of a distance function (or metric)
positive definite property of a norm

positive definite property of an inner product



Similarly, we have

the triangle inequality for a distance function
(or the metric triangle inquality)

and
the triangle iequality for a norm.

There is also

metric symmetry
and

the symmetry of an inner product.

8. Show that d(x, y) = ‖x − y‖ defines a distance function on any normed vector space.
This is called the norm induced metric. Thus every normed space is a metric space.
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Uniform Convergence

(We will use this in our study of monotone functions.)

Let E ⊂ R be a fixed set. If uj : E → R is a real valued function for each j = 1, 2, 3, . . .
and u : E → R is also a real valued function, we say the sequence

{uj}
∞

j=1
converges to u pointwise

if for each x0 ∈ E the following condition holds:

For any ǫ > 0, there is some N such that

j > N =⇒ |uj(x0) − u(x0)| < ǫ.

We say
{uj}

∞

j=1
converges uniformly to u

if the following condition holds:

For any ǫ > 0, there is some N such that

j > N =⇒ |uj(x) − u(x)| < ǫ for every x ∈ E.

13. (a) Give an example of a sequence of real valued functions uj : R → R that converges
pointwise but not uniformly.

(b) Give an example of a sequence of real valued functions uj ∈ C0[0, 1] which converges
pointwise but not uniformly.

14. (a) Give an example of a sequence of real valued functions uj ∈ C0[0, 1] which converges
pointwise to a discontinuous function.

(b) Show that the uniform limit of a sequence of continuous real valued functions is
continuous. More precisely, show that if uj : E → R is continuous at x0 ∈ E and
{uj}

∞

j=1
converges uniformly to a function u : E → R, then u is continuous at x0.

Monotone Functions

15. (a) Let {x1, x2, . . . , xn} be a finite set of distinct real numbers. Let {y1, y2, . . . , yn} ⊂ R,
and let {a1, a2, . . . , an} ⊂ (0,∞). Show u : R → R by

u(x) =

n
∑

j=1

uj(x) where uj(x) =

{

yj, x < xj

yj + aj , x ≥ xj

is a monotone non-decreasing function with discontinuities precisely at x1, x2, . . . , xn.

(b) Let
{xj}

∞

j=1

be a sequence of distinct real numbers. Show there exists a monotone non-decreasing
function u : R → R with discontinuities precisely at x1, x2, x3, . . ..


