
Math 4317, Final Assignment Part A

§1.3 Vector Spaces

1. Prove Gunning’s Theorem 1.5: If A is an m × n matrix with entries in a field F , then
there are square invertible matrices Tm×m and Un×n such that

TAU =

(

Ik 0
0 0

)

where Ik is the k × k identity matrix and dim ker(A) = n − k.

2. Gunning §1.3 Group I Problem 7

§2.4 Compact Sets

3. Prove any compact subset of a Hausdorff space is closed.

4. Prove any compact subset of a metric space is bounded.

5. (Heine-Borel) Prove any closed and bounded subset of Rn is compact.

6. Let X be a complete metric space. If E1, E2, E3, . . . is a sequence of closed and bounded
sets satisfying the following

1. Ej 6= φ for j = 1, 2, 3, . . .,

2. Ej ⊃ Ej+1, and

3. limj→∞ diam Ej = 0,

then the intersection

∩∞

j=1Ej contains precisely one point.

7. (Baire) Let X be a (nonempty) complete metric space. If G1, G2, G3, . . . is a sequence
of dense open sets in X, i.e., each Gj is open and

Gj = X,

then
∩∞

j=1Gj = X.

In particular, ∩∞

j=1Gj 6= φ. Hint: Use the result of the previous problem.

Incidentally, a countable intersection of open sets is called a “G-δ” set. A set is nowhere

dense if its closure contains no open set. A countable union of nowhere dense sets is
called (according to Baire) a set of the first category. A set is called (according to
Baire) a set of the second category if it is not a set of the first category. Use this
lovely inspired terminology of Baire to describe the result above.

8. Prove Gunning’s Corollary 2.30: The set of rational numbers cannot be written as a
countable intersection of open sets.

9. Prove Gunning’s Corollary 2:32: R is uncountable.



§3.1 Limits and Continuity

We have seen ǫ − δ continuity for real valued functions defined on subsets of R in
Assignment 3B. The definition there generalizes immediately to functions on metric
spaces: If X and Y are metric spaces and f : X → Y is a function, then f is continuous

at x0 ∈ X, if for any ǫ > 0, there exists some δ > 0 such that

dX(x, x0) < δ =⇒ dY (f(x), f(x0)) < ǫ.

We have also seen various notions of limits of sequences of numbers. These definitions
contain the basic ideas for a rigorous definition of convergence at finite points for a
function. Again, let X and Y be metric spaces and consider a function f : X → Y be a
function from one metric space X to another metric space Y . We say f(x) converges

to a limit y0 ∈ Y if for any ǫ > 0, there exists some δ such that

x ∈ Bǫ(x0)\{x0} =⇒ f(x) ∈ Bδ(y0).

It is often convenient to have a more general version of this definition: If A ⊂ X and
f : A → Y , we say f(x) converges to a limit y0 ∈ Y if for any ǫ > 0, there exists some
δ such that

x ∈ [Bǫ(x0)\{x0}] ∩ A =⇒ f(x) ∈ Bδ(y0).

Notice the second version does not require f to be defined at the point x0 ∈ X. In either
of these cases, we write

lim
x→x0

f(x) = y0.

10. Show f : X → Y is continuous at x0 ∈ clus(X) if and only if

lim
x→x0

f(x) = f(x0).

Does this result still hold if x0 ∈ X\ clus(X)? N.b. Gunning Theorem 3.11.

11. Show that a function f : X → Y is continuous at every x ∈ X (or simply continuous

on X) if and only if f−1(V ) is open for every open set V in Y .

If f : X → Y is a function, and Y = R, we say f is a real valued function. The set of all
continuous real valued functions on a metric space X is denoted C0(X).

12. If X is a metric space and x0 ∈ X, then f : X → R by f(x) = d(x, x0) is continuous on
X, i.e., f ∈ C0(X).

13. If X is a normed space, then f : X → R by f(x) = ‖x‖ is continuous.

14. Show the continuous image of a connected set is connected.

15. Show the continuous image of a compact set is compact.



16. (extreme value theorem) If f ∈ C0(K) where K is a compact set, then

−∞ < inf
x∈K

f(x) ≤ sup
x∈K

f(x) < ∞

and there exist points xm and xM in K such that

f(xm) = inf
x∈K

f(x) and f(xM) = sup
x∈K

f(x).

This means, in particular, that

min
x∈K

f(x) and max
x∈K

f(x) both exist.

17. (Intermediate value theorem) If f ∈ C0[a, b] with f(a) 6= f(b) and v is any real number
(strictly) between f(a) and f(b), then there exists some x∗ ∈ (a, b) with f(x∗) = v.

18. (sequential limits) If X and Y are metric spaces with x0 ∈ clus(X) and f : X → Y ,
show

lim
x→x0

f(x) = y0

if and only if for every sequence {xj}
∞

j=1 ⊂ X with limj→∞ xj = x0, there holds

lim
j→∞

f(xj) = y0.

Does this result still hold if x0 ∈ X\ clus(X)? N.b. Gunning Theorem 3.12.

Oscillation

The oscillation of a bounded real valued function f : X → R defined on a metric space
X over the set A ⊂ X is defined by

osc(f, A) = sup
x∈A

f(x) − inf
x∈A

f(x).

The oscillation at a point x0 ∈ X is defined by

osc(f, x0) = lim
r→0

osc(f, Br(x0)).

19. Show the oscillation of a bounded function at a point is well-defined and that such a
function is continuous at x0 ∈ X if and only if osc(f, x0) = 0.

20. (a) Show there exists a function which is discontinous at each rational number and
continuous at each irrational number. Hint: Recall Assignment 4A Problem 15.

(b) Show there does not exist a function which is discontinuous at each irrational
number and continuous at each rational number.



Homeomorphism

Let X and Y be topological spaces. A function f : X → Y is a homemorphism if

1. f is a bijection.

2. f is continuous.

3. f−1 is continuous.

21. (a) Find an example of a function f : X → Y which is a bijection and is continuous
but is not a homeomorphism, i.e., f−1 : Y → X is not continuous.

(b) (Theorem 3.10 of Gunning) Show that a bijective continuous function f : X → Y
where X is a compact Hausdorff space and Y is a Hausdorff space is a homeo-

morphism. Note/recall that the requirement that X and Y be Hausdorff is not
very restrictive; the main hypothesis is that X is compact.

Uniform Continuity

Let X and Y be metric spaces. A function f : X → Y is uniformly continuous if for
any ǫ > 0, there is some δ > 0 such that

dX(x2, x1) < δ =⇒ dY (f(x2), f(x1)) < ǫ. (1)

Notice that δ here does not depend on either point x1 or x2 individually. Of course, δ
may be expected to depend on ǫ, and the assertion (1) depends on the closeness of the
points x1 and x2 as stipulated.

22. (a) Show that if X and Y are normed vector spaces and f : X → Y is any continuous
linear function, then f is uniformly continuous.

(b) Can you formulate a notion of uniform continuity applicable to general topological
spaces? That is, if X and Y are topological spaces (with no metric) and f : X → Y
is continuous, is there any natural notion of uniform continuity for f?

(c) Show that if X and Y are metric spaces, X is compact, and f : X → Y is continuous,
then f is uniformly continuous.

(d) Give examples of functions f : R → R and g : (0, 1) → R which are not uniformly

continuous.

Uniformly Cauchy Sequence of Functions

A sequence of functions fj : X → Y for j = 1, 2, 3, . . . where X is a topological space
and Y is a metric space is said to be uniformly Cauchy if for any ǫ > 0, there exists
some N ∈ N such that

j, k > N =⇒ dY (fj(x), fk(x)) < ǫ for all x ∈ X.



Remember the definition of uniform convergence of a sequence of real valued functions
defined on a subset of R from Assignment 4A. That definition extends naturally to
this context: A sequence of functions fj : X → Y for j = 1, 2, 3, . . . where X is a
topological space and Y is a metric space is said to be uniformly convergent to a
function f : X → Y if for any ǫ > 0, there exists some N ∈ N such that

j > N =⇒ dY (fj(x), f(x)) < ǫ for all x ∈ X.

23. (a) Show that any uniformly convergent sequence of functions is uniformly Cauchy.

(b) Show that any uniformly Cauchy sequence of functions fj : X → Y for j = 1, 2, 3, . . .
with values in a complete metric space Y is uniformly convergent to some
function f : X → Y .

Differentiability

If E ⊂ R and x0 ∈ E ∩ clus(E), a function u : E → R is said to have an extended real

valued derivative u′(x0) at x0 if

u′(x0) = lim
x∈E

x→x0

u(x) − u(x0)

x − x0

exists as an extended real number in [−∞,∞]. Given a function u : E → R with
extended real valued derivative u′(x0), we say u is differentiable at x0 if u′(x0) ∈ R.

The quantity
u(x) − u(x0)

x − x0

is called the difference quotient at x0. The difference quotient may also be expressed
as

u(x0 + h) − u(x0)

h

where h = x − x0 6= 0.

24. (a) Show that if a0, a1, . . . , ak ∈ R and p : R → R by

p(x) =
k

∑

j=0

ajx
j ,

then p is differentiable (and find the formula for p′(x)).

(b) Show that if u : E → R is differentiable at x0 ∈ E, then u is continuous at x0.

(c) Show f : R → R by

f(x) =

{

0, x ∈ Q

1, x ∈ R\Q

is nowhere differentiable.



Weierstrass’ Nowhere Differentiable Function

In this construction we will use the sine and cosine functions. Recall that we have not
yet rigorously defined the cosine function or the number π, but we are all moderately fa-
miliar with the fact (mentioned in Assignment 5A) that there is a well-defined monotone
decreasing bijective function cos : [0, π] → [−1, 1]. As mentioned in Assignment 5A, this
function is continuous. Furthermore, the cosine function extends to the entire real line
as a differentiable periodic function cos : R → [−1, 1] satisfying

cos(θ + 2π) = cos θ and cos(θ + π) = − cos θ for every θ ∈ R

as indicated in Figure 1.

Figure 1: The cosine and the sine

The extension is no longer bijective or invertible on this new domain, but it is surjective.
Now, we will assume also that the cosine function is differentiable and has a continuous
derivative which we denote by

d

dθ
cos θ = − sin θ.

The function sin : R → [−1, 1] may also be assumed to have the familiar monotonicity,
periodicity and differentiability properties:

sin : [−π/2, π/2] → [−1, 1] is continuous surjective and increasing,

sin(θ + 2π) = sin θ, sin(θ + π) = − sin θ, and
d

dθ
sin θ = cos θ for every θ ∈ R.

We can (and should) prove all these properties rigorously. There are some things we can
prove now.

25. Define what it means for a function f : R → R to have a local maximum at x0 ∈ R.
Show that if f is differentiable at a point of local maximum x0, then f ′(x0) = 0. Conclude
that sin kπ = cos(π/2 + kπ) = 0 for k ∈ Z.

We will also use the following properties of the cosine function:

| cos θ2 − cos θ1| ≤ |θ2 − θ1| for all θ1, θ2 ∈ R,

cos[θ1 + θ2] = cos θ1 cos θ2 − sin θ1 sin θ2 for all θ1, θ2 ∈ R,

and
2 + 3π < 15.



26. Consider the function u : R → R given by

u(x) =

∞
∑

j=0

1

2j
cos(15jπx).

Show that u is well-defined and continuous. Hint(s): Remember from assignment 4A
that a uniform limit of continuous functions is continuous.

27. Consider Weierstrass’ continuous function u : R → R defined in the previous problem.
Let uk : R → R be the partial sum

uk(x) =

k
∑

j=0

1

2j
cos(15jπx).

Let x0 > 0 be fixed.

(a) Show the difference quotient for uk at x0 satisfies
∣

∣

∣

∣

uk(x0 + h) − uk(x0)

h

∣

∣

∣

∣

< π
(15/2)k+1

15/2 − 1
.

(b) Write 15k+1x = mk + δk where mk ∈ N0 and −1/2 < δk ≤ 1/2, and consider the
sequence

hk =
1 − δk

15k+1
.

Show the difference quotient for u − uk at x0 with increment hk satisfies

(u − uk)(x0 + hk) − (u − uk)(x0)

hk

=
(−1)mk+1

hk

∞
∑

j=k+1

1

2j

[

1 + cos(15j−k−1δkπ)
]

,

and
∣

∣

∣

∣

(u − uk)(x0 + hk) − uk(x0)

hk

∣

∣

∣

∣

≥
1

hk

1

2k+1
[1 + cos(δkπ)] ≥

1

hk

1

2k+1
.

(c) Conclude that

lim
k→∞

∣

∣

∣

∣

u(x0 + hk) − u(x0)

hk

∣

∣

∣

∣

= +∞.

and hence, u is not differentiable at any point x0 ∈ R.

28. (Mean value theorem, Gunning Theorem 3.29) If f and g are continuous functions on
the closed interval [a, b] and f and g are both differentiable on the open interval (a, b),
then there exists some x∗ ∈ (a, b) with

[f(b) − f(a)]g′(x∗) = [g(b) − g(a)]f ′(x∗).

Hint: Apply the extreme value theorem to h(x) = [f(b) − f(a)]g(x)− [g(b)− g(a)]f(x).

29. (Mean value theorem, Gunning Theorem 3.29) If f ∈ C0[a, b] and f is differentiable on
the open interval (a, b), then there exists some x∗ ∈ (a, b) with

f(b) − f(a)

b − a
= f ′(x∗).



Monotone Functions (inverses)

30. Let I = [a, b] be an interval in R and u : I → R a non-decreasing left continuous function.
Consider v : J → R by

v(y) = inf{x ∈ I : u(x) ≥ y}.

Show that for all x ∈ [a, b]

u(x) = inf{y ∈ [u(a), u(b)] : v(y) ≥ x}.


