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Introduction

The statement of Exercise 6 in the discussion of the Cantor-Bernstein theorem is the
following:

Consider

h1(x) =

{

f(x) for x ∈ A\G0,
g−1(x) for x ∈ G0.

What happens if one tries to show h1 is a bijection? What about in the explicit
example?

Here, as we know, we have injections f : A→ B and g : B → A. Also, the set G0

is defined by

G0 =
⋃

k∈N0

(g ◦ f)k[g(B\f(A))],

and we know from Exercise 4 that if x ∈ G0 then h1(x) = g−1(x) is well-defined, and
if h1 is to be a bijection, then that is how h1(x) must be defined.

The “explicit example” is given by f(n) = 2n and g(m) = 2m+1 where A = B =
N0.

1 Solution Part A

As in the proof that h was a bijection, the function h1 is clearly well-defined. This is
because G0 ⊂ g(B).

We can consider three cases in which h1(a) = h1(x) to see that h1 is an injection:
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CASE I: a, x ∈ A\G0.
In this case, h(a) = f(a) and h(x) = f(x). Since f is injective, we know a = x.

CASE II: a ∈ G0 and x ∈ A\G0.
a = (g ◦ f)k ◦ g(b) for some k ∈ N0 and some b ∈ B\f(A). If k = 0, then f(x) = b

which contradicts b /∈ f(A). If k > 0, then

f(x) = f ◦ (g ◦ f)k−1 ◦ g(b) or x = (g ◦ f)k−1 ◦ g(b) ∈ G0.

This is also a contradiction.
CASE III: a, x ∈ G0.

In this case, g−1(a) = g−1(x), so a = x simply by application of g to both sides.
Therefore, h1 is injective.
When we try to show h1 is surjective, there seems to be a problem. We start with

b ∈ B, and then we can consider g(b) ∈ A. Of course, if g(b) ∈ G0, then we have
a = g(b) ∈ A with h1(a) = g−1(a) = b. So that’s okay. But if g(b) ∈ A\G0, then it is
not immediately clear how to find some x ∈ A for which h1(x) = f(x) = b.

If we knew

g(b) = (g ◦ f)m(a) ∈ F0 =
⋃

n∈N0

(g ◦ f)n(A\g(B))

then we would be okay. If m = 0, we get a = g(b) which contradicts a /∈ g(B), so we
know m > 0, and this means

b = f ◦ (g ◦ f)m−1(a)

and since x = (g ◦ f)m−1(a) ∈ F0 ⊂ A\G0 by Exercise 5, then we have b = f(x) =
h1(x). But we don’t know g(b) is in one of the sets F0 and G0. Maybe g(b) is some
point in A outside both these sets. So we’re stuck for the moment.1

Solution Part B

We recall that the first set defining F0 was A\g(B). In the explicit example, we have

g(B) = {2m+ 1 : m ∈ N0} (the positive odd integers)

1Note that one way to view the basic problem here is that we haven’t said anything about, and
we don’t know anything about, the set A\(F0 ∪ G0). In order to get further, we need to figure out
something about the elements in A\(F0 ∪G0) if there are any. This is addressed below, and it turns
out something can be said about those elements.
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and
A\g(B) = {2m : m ∈ N0} (the non-negative even integers).

Then we had more interesting sets.

g ◦ f [A\g(B)] = {8m+ 1 : m ∈ N0} = {1, 9, 17, 25, . . .},

(g ◦ f)2[A\g(B)] = {32m+ 5 : m ∈ N0} = {5, 37, 69, 101, . . .}.

These latter sets are all odds of course. They go along with the evens to make up F0.
On the other side, G0 starts with g(B\f(A)) and is all composed of odd numbers:

g(B\f(A)) = {4n+ 3 : n ∈ N0} = {3, 7, 11, 15, . . .},

g ◦ f [g(B\f(A))] = {16n+ 13 : n ∈ N0} = {13, 29, 45, 61, . . .},

(g ◦ f)2[g(B\f(A))] = {64n+ 53 : n ∈ N0} = {53, 117, 245, 309, . . .}.

One may sort of suspect all odd numbers will show up in this process so that A =
N0 = F0 ∪G0 in this explicit example. In fact, this is the case, but we basically need
to think about a different proof of the Cantor-Bernstein theorem by Julius König to
see it. König considers sequences alternating with values between A and B like we did
in the solution to Exercise 4, but with two new ingredients. The first is that instead
of just starting at a particular element b ∈ B and applying g and then f alternatively,
we also consider the possibility of starting at some element a ∈ A and then applying
f followed by g and so on. The other new ingredient, is that König considers going
in the reverse direction as well. Say you have

b 7→ g(b) 7→ f ◦ g(b) 7→ · · ·

This will always continue to the right. But if b ∈ f(A), then there is a unique
continuation/extension to the left as well:

f−1(b) 7→ b 7→ g(b) 7→ f ◦ g(b) 7→ · · · .

In our explicit example, the most important observation is that these sequences are
all decreasing and bounded below (by 0). This means each such sequence must stop
(on the left). There are precisely two ways such a sequence can stop. One way is
that one ends up with an element of B\f(A), in which case the last element on the
left is in B, the second element is in G0, and every other element after that (the A
elements) are all in G0. Conversely, every element of G0 is, by definition, one of the
A elements in such a sequence.
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The other possibility for stopping on the left is that you end up with an element
of A\g(B). In this case, the A elements in this sequence are in F0. And just like for
the elements in G0, this is precisely what it means to be in F0.

To summarize, Königs construction reinterprets the elements of F0 as those which
fall in one of these bi-directional sequences which ends with an element in A. The
elements in G0 are those elements in A found in bi-directional sequences ending in B.

In our explicit example, all sequences end, and every integer is clearly in some
sequence. Thus, N0 = F0 ∪ G0 in our example. In particular, all the odds will be
found in the sequence of sets indicated above. Also, the function h1 : N0 → N0 defined
as in this exercise will be a bijection in our explicit example.

2 Solution Part C

Königs construction also clears up something else. The elements in A which are in
A\(F0 ∪G0) are precisely those which do not end on the left. It is pretty easy to see
that there can be such examples. Let’s take A = B = Z and for clarity, let’s denote
the elements of A by aj for j ∈ Z and the elements of B by bj for j ∈ Z. Then
consider

f(n) =

{

n+ 1 if n is odd or positive,
n− 1 if n is even and nonpositive.

and

g(m) =

{

m+ 1 if m is even,
m− 1 if m is odd.

That is,
f : a2j+1 7→ b2j+2, a|j|+1 7→ b|j|+2, a−2|j| 7→ b−2|j|−1,

and
g : b2j+1 7→ a2j , b2j 7→ a2j+1.

Notice that b1 ∈ B\f(A), so

b1 7→ a0 7→ b−1 7→ a−2 7→ b−3 7→ · · ·

is a sequence ending on the left in B. Thus, a0, a−2, a−4, . . . ∈ G0.
On the other hand, a1 satisfies

· · · 7→ b−2 7→ a−1 7→ b0 7→ a1 7→ · · ·
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and this sequence does not end on the left. Therefore,

. . . , a−3, a−1, a1, a3, . . . ∈ A\(F0 ∪G0).

So our proof above for h1 would nominally be in trouble. It is also possible, of
course, that one of these sequences that does not end on the left can repeat instead
of containing infinitely many elements. This is the case, for example if f(a) = b and
g(b) = a. Then you can go back and forth alternating between a and b, but you still
get a ∈ A\(F0 ∪G0).

Now, we can complete our proof. Recall that we started with b ∈ B. We considered
the cases when g(b) ∈ G0 and when g(b) ∈ F0 ⊂ A\G0. In each of these cases, we
found an element x ∈ A for which h1(x) = b. The final case is that in which g(b)
lies in the set U = A\(F0 ∪ G0) consisting of all the elements in A belonging to
unending sequences, i.e., sequences that do not end on the left. Notice that the B
elements in these sequnces are also disjoint from any sequence generating elements
in F0 or G0 because they are all also elements in unending sequences. Thus, we have
defined h1(x) = f(x) for all these elements. In particular, proceeding to the left from
g(b) ∈ U ⊂ A, we have

· · · 7→ x 7→ b 7→ g(b) 7→ · · ·

for some x ∈ A with f(x) = b. Since x /∈ G0 is a part of a sequence which is unending
on the left, we have h1(x) = f(x) = b, and h1 is onto. �

Epilogue

The sets

F0 =
⋃

n∈N0

(g ◦ f)n(A\g(B)) and G0 =
⋃

k∈N0

(g ◦ f)k[g(B\f(A))]

in our explicit example seem to be quite interesting. Let us write

Φj = (g ◦ f)j(A\g(B)) and Ψk = (g ◦ f)k[g(B\f(A))]

so that F0 = ∪Φj and G0 = ∪Ψk. We know that the “base sets” A\g(B) and
g(B\f(A)) consist of the evens and certain odds, namely {4n + 3 : n ∈ N0}, respec-
tively. We know further that the sets Φj for j ∈ N and Ψk for k ∈ N0 contain all the
positive odd integers.

5



Exercise 1 Show that for j ∈ N

Φj = {φn,j : n ∈ N0} where φn,j = 22j+1n +

j−1
∑

ℓ=0

4ℓ.

Show that for k ∈ N0

Ψk = {ψn,k : n ∈ N0} where ψn,k = 22k+2n+ 2 · 4k +
k

∑

ℓ=0

4ℓ.

Show that the sets Φj, j ∈ N and Ψk, k ∈ N0 are disjoint sets of odd integers, so

that the formulas given for φn,j and ψn,k represent unique odd integers. Hint on the

formulas: Induction. Hint on the last part: König’s construction.

If the assertions in the previous exercise are correct, then we have represented the
odd integers as the image of the disjoint union of the two integer lattices L = N0 ×N

and M = Nn × N0.
A standard proof of the countability of the (non-negative) rational numbers in-

volves a mapping from the lattice L = N0×N (with the lattice point (n, k) representing
the rational number n/k and ignoring reduction to lowest terms, so 1/2 and 2/4 are
considered “different”) to the integers. One possibility is

ν(n, k) =
(n + k − 1)(n+ k)

2
+ k.

This map starts with (0, 1) 7→ 1. Then you move to the next “anti-diagonal” starting
with (1, 1) 7→ 2 and (0, 2) 7→ 3. The next anti-diagonal is

(2, 1) 7→ 4, (1, 2) 7→ 5, (0, 3) 7→ 6,

and so on. This is a very simple pattern associating a natural number to each element
of the lattice.

It is interesting to observe how the formulas for ψ and φ above associate distinct
odd naturals numbers to each node in L ∪M . (Can you see a pattern?)
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