Matrix Center

John McCuan

April 24, 2020

Here is my attempt to clearly explain that if $A B=B A$ for all $n \times n$ matrices B, then the $n \times n$ matrix A must be diagonal and have the form $a I$ for some scalar a where I is the $n \times n$ identity matrix:

Consider the matrix $E_{i j}$ where the element in the i, j position is equal to 1 and all other entries are 0 . The product $A E_{i j}$ is a matrix with all zeros except (possibly) in the j-th column, and the j-th column has entries $a_{1 i}, a_{2 i}, \ldots, a_{n i}$:

$$
A E_{i j}=\left(\begin{array}{ccccccc}
0 \\
0 & & 0 & a_{1 i} & 0 & & 0 \\
0 & & 0 & a_{2 i} & 0 & & 0 \\
\vdots & \ldots & \vdots & \vdots & \vdots & \ldots & \vdots \\
0 & & 0 & a_{n i} & 0 & & 0
\end{array}\right)
$$

Note that the $i j$ entry in this matrix is $a_{i i}$. The matrix $E_{i j} A$ on the other hand, is a matrix with all zeros except (possibly) in the i-th row. The i-th row, moreover contains entries $a_{j 1}, a_{j 2}, \ldots, a_{j n}$ so this product looks (something) like this:

$$
E_{i j} A=\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
& & \vdots & \\
0 & 0 & \cdots & 0 \\
a_{j 1} & a_{j 2} & \cdots & a_{j n} \\
0 & 0 & \cdots & 0 \\
& & \vdots & \\
0 & 0 & \cdots & 0
\end{array}\right) \leftarrow i
$$

The $i j$ entry in this matrix is $a_{j j}$. Therefore, if $X_{i j} A=A X_{i j}$, then the $i j$ entry in these matrices must be equal, that is

$$
a_{i i}=a_{j j} .
$$

This shows that for any i and j, we have $a_{i i}=a_{j j}$. That is, all diagonal entries are the same.

Note also that for $k<i$ or $k>i$, the entires $a_{j k}$ in the second product $E_{i j} A$ must all be zero. This means that all non-diagonal entries in A are zero and A is a diagonal matrix.

We have shown $A=a I$ for some scalar a.
There is a bit of ambiguity in this problem concerning the entries in the matrices under consideration. If one takes $M_{n}=M_{n}(\mathbb{R})$ to be the $n \times n$ matrices with real entries, then we have shown

$$
Z\left(M_{n}\right) \subset\{a I: a \in \mathbb{R}\} .
$$

Another alternative would be to let R be any ring and consider $M_{n}=M_{n}(R)$. Then, we have shown

$$
Z\left(M_{n}\right) \subset\{a I: a \in R\} .
$$

I believe the general result in this case is, as Benjamin Ventimiglia points out,

$$
Z\left(M_{n}\right)=\{a I: a \in Z(R)\} .
$$

I should also like to record and credit Benjamin with the following nice phrasing:
The matrix $A E_{i j}$ will have the i-th column of A in the j-th column (and zeros elsewhere).
The matrix $E_{i j}$ will have the j-th row of A in the i-th row (and zeros elsewhere).

