Matrix Center

John McCuan

April 24, 2020

Here is my attempt to clearly explain that if AB = BA for all $n \times n$ matrices B, then the $n \times n$ matrix A must be diagonal and have the form aI for some scalar a where I is the $n \times n$ identity matrix:

Consider the matrix E_{ij} where the element in the i, j position is equal to 1 and all other entries are 0. The product AE_{ij} is a matrix with all zeros except (possibly) in the *j*-th column, and the *j*-th column has entries $a_{1i}, a_{2i}, \ldots, a_{ni}$:

$$AE_{ij} = \begin{pmatrix} 0 & 0 & a_{1i} & 0 & 0 \\ 0 & 0 & a_{2i} & 0 & 0 \\ \vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & a_{ni} & 0 & 0 \end{pmatrix}.$$

Note that the ij entry in this matrix is a_{ii} . The matrix $E_{ij}A$ on the other hand, is a matrix with all zeros except (possibly) in the *i*-th row. The *i*-th row, moreover contains entries $a_{j1}, a_{j2}, \ldots, a_{jn}$ so this product looks (something) like this:

$$E_{ij}A = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ & \vdots & \\ 0 & 0 & \cdots & 0 \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ 0 & 0 & \cdots & 0 \\ & \vdots & \\ 0 & 0 & \cdots & 0 \end{pmatrix} \leftarrow i .$$

The *ij* entry in this matrix is a_{jj} . Therefore, if $X_{ij}A = AX_{ij}$, then the *ij* entry in these matrices must be equal, that is

$$a_{ii} = a_{jj}$$
.

This shows that for any i and j, we have $a_{ii} = a_{jj}$. That is, all diagonal entries are the same.

Note also that for k < i or k > i, the entires a_{jk} in the second product $E_{ij}A$ must all be zero. This means that all non-diagonal entries in A are zero and A is a diagonal matrix.

We have shown A = aI for some scalar a.

There is a bit of ambiguity in this problem concerning the entries in the matrices under consideration. If one takes $M_n = M_n(\mathbb{R})$ to be the $n \times n$ matrices with real entries, then we have shown

$$Z(M_n) \subset \{aI : a \in \mathbb{R}\}.$$

Another alternative would be to let R be any ring and consider $M_n = M_n(R)$. Then, we have shown

$$Z(M_n) \subset \{aI : a \in R\}.$$

I believe the general result in this case is, as Benjamin Ventimiglia points out,

$$Z(M_n) = \{aI : a \in Z(R)\}.$$

I should also like to record and credit Benjamin with the following nice phrasing:

The matrix AE_{ij} will have the *i*-th column of A in the *j*-th column (and zeros elsewhere).

The matrix E_{ij} will have the *j*-th row of A in the *i*-th row (and zeros elsewhere).