Covid 0.2 Topological Continuity

John McCuan

March 27, 2020

The objective of this document is to prompt the creation of a solid, beautiful, and elegant proof of the fact that two seemingly different definitions of **continuity** are equivalent when they are both applicable.

1 The ϵ - δ Definition

Given metric spaces X and Y with distance functions d_X and d_Y , we say $f: X \to Y$ is **continuous at a point** $x_0 \in X$ if the following condition holds:

Given $\epsilon > 0$, there is some $\delta > 0$ such that

$$d_X(x, x_0) < \delta \implies d_Y(f(x), f(x_0)) < \epsilon.$$
 (1)

2 The Topological Definition

Given topological spaces X and Y, we say a function $f : X \to Y$ is continuous at a point $x_0 \in X$ if the following condition holds:

Given any open set V in Y with $f(x_0) \in V$, there is some open set U in X such that $x_0 \in U$ and

$$f(U) = \{f(x) : x \in U\} \subset V.$$

$$(2)$$

3 Common Ground

Not every topological space is a metric space, but every metric space is a topological space. More precisely, a distance function d on a (metric) space X induces a topology called the **metric topology** as follows:

Exercise 1 Let X be a metric space. Let \mathcal{T} be the collection of all subsets U of X having the following property:

For each
$$x_0 \in U$$
, there is some $r > 0$ such that
 $B_r(x_0) = \{x \in X : d(x, x_0) < r\} \subset U$

Show \mathcal{T} is a **topology** (set of open sets) making X a topological space. That is, you need to show $\phi \in \mathcal{T}$, $X \in \mathcal{T}$, and \mathcal{T} is closed under finite intersections and arbitrary unions.

Therefore, our definitions of **continuity at a point** both make sense for a function $f: X \to Y$ when X and Y are metric spaces considered with respect to the metric topology.

4 What to Show

Let X and Y be metric spaces with distance functions d_X and d_Y . One should be able to show the following:

- 1. If $f: X \to Y$ is continuous at $x_0 \in X$ according to the ϵ - δ definition, then f is continuous at x_0 with respect to the metric topologies on X and Y.
- 2. If $f: X \to Y$ is continuous at $x_0 \in X$ with respect to the metric topologies on X and Y, then f is continuous at x_0 according to the ϵ - δ definition.
- 3. If $f: X \to Y$ is continuous at every point $x_0 \in X$, then

$$f^{-1}(V) = \{x \in X : f(x) \in V\}$$

is open in X for every open set V in Y.

4. If $f: X \to Y$ and

$$f^{-1}(V) = \{x \in X : f(x) \in V\}$$

is open in X for every open set V in Y, then f is continuous at every point $x_0 \in X$.