Math 4317, Exam 1

1. (Assignment 1A Problem 9) Let E be any subset of the real numbers \mathbb{R} and assume $u: E \rightarrow \mathbb{R}$ satisfies

$$
u(x) \leq u(y) \text { for all } x, y \in E \text { with } x<y
$$

In this case, we say u is monotone non-decreasing.
(a) Let $x_{0} \in \mathbb{R}$ be fixed. Show the set

$$
V=\left\{u(x): x \in E \text { and } x>x_{0}\right\}
$$

is bounded below but not necessarily bounded above. Note: To show V is bounded below you need to show there is a real number ℓ such that $\ell \leq v$ for every $v \in V$. To show V is not necessarily bounded above means to give an explicit example where V is not bounded above, i.e., there is no real number U such that $v \leq U$ for every $v \in V$. The number ℓ is called a lower bound. The number U, were such a number to exist, is called an upper bound.
(b) The completeness of the real numbers implies that a nonempty set of real numbers which is bounded below has a greatest lower bound, that is, a real number ℓ_{0} which is a lower bound such that $\ell_{0} \geq \ell$ for every lower bound ℓ. Does the set V from the previous part of this problem necessarily have a greatest lower bound? Note: If your answer is "yes," then you should prove it. If your answer is "no," then you should give an example, i.e., counterexample.
(c) If the set V from the first part of this problem has a greatest lower bound, show the set of lower bounds for V,

$$
A=\{\ell: \ell \leq v \text { for all } v \in V\}
$$

is bounded above.
(d) If the set V from the first part of this problem has a greatest lower bound ℓ_{0}, show the least upper bound U_{0} of the set A from the previous part satisfies $U_{0} \leq \ell_{0}$.
2. (intervals; Assignment 1A Problem 10) A set $I \subset \mathbb{R}$ is an interval if we have $x, y \in I$ with $x<y$, then we must have

$$
[x, y]=\{\xi \in \mathbb{R}: x \leq \xi \leq y\} \subset I
$$

Show that every interval has exactly one of the following ten forms:

$$
\begin{aligned}
\phi & \\
(-\infty, \infty) & =\mathbb{R} \\
(-\infty, b) & =\{x \in \mathbb{R}: x<b\} \\
(-\infty, b] & =\{x \in \mathbb{R}: x \leq b\} \\
(a, \infty) & =\{x \in \mathbb{R}: x>a\} \\
{[a, \infty) } & =\{x \in \mathbb{R}: x \geq a\} \\
(a, b) & =\{x \in \mathbb{R}: a<x<b\} \\
{[a, b) } & =\{x \in \mathbb{R}: a \leq x<b\} \\
(a, b] & =\{x \in \mathbb{R}: a<x \leq b\} \\
{[a, b] } & =\{x \in \mathbb{R}: a \leq x \leq b\}
\end{aligned}
$$

Hint: Either an interval is bounded below-or it is not. They key is to find the numbers a and/or b.
For the next two problems below, assume $u: I \rightarrow \mathbb{R}$ is a monotone non-decreasing function defined on an interval I. You may use the following fact and definition: If the least upper bound U_{0} of $u\left(\left(-\infty, x_{0}\right)\right)$ and the greatest lower bound ℓ_{0} of $u\left(\left(x_{0}, \infty\right)\right)$ both exist, then

$$
\begin{equation*}
U_{0} \leq u\left(x_{0}\right) \leq \ell_{0} \tag{1}
\end{equation*}
$$

Defintion If $x_{0} \in I$ and at least one of the inequalities in (1) is strict, we say x_{0} is a point of discontinuity of the monotone non-decreasing function u. Note: This definition does not require that both numbers U_{0} and ℓ_{0} exist.
3. (Assignment 1A Problem 12) Assume $u: I \rightarrow \mathbb{R}$ is a monotone non-decreasing function defined on an interval I.
(a) If $x_{0} \in I$, when is it possible that neither the least upper bound U_{0} of $u\left(\left(-\infty, x_{0}\right)\right)$ nor the greatest lower bound ℓ_{0} of $u\left(\left(x_{0}, \infty\right)\right)$ exist?
(b) If $x_{0} \in I$ is a point of discontinuity of u, what are the possible relations between U_{0}, ℓ_{0}, and $u\left(x_{0}\right)$?
4. (Assignment 1A Problem 13) Assume $u: I \rightarrow \mathbb{R}$ is a monotone non-decreasing function defined on an interval I. Show the set of discontinuities of u is (at most) countable.
5. (Assignment 1B Problem 4) A function $\phi: G_{1} \rightarrow G_{2}$ from one group G_{1} to another G_{2} is a homomorphism if $\phi(a b)=\phi(a) \phi(b)$ for every $a, b \in G_{1}$. A bijective homomorphism is called a group isomorphism, and two groups with a group isomorphism between them are said to be isomorphic groups.
(a) Show that the kernel, $\operatorname{ker}(\phi)=\left\{a \in G_{1}: \phi(a)=e\right\}=\phi^{-1}(e)$ where e is the identity element in G_{2}, of a homomorphism and the image, $\operatorname{im}(\phi)=\left\{\phi(a): a \in G_{1}\right\}=$ $\phi\left(G_{1}\right)$, of a homomorphism are subgroups of the groups G_{1} and G_{2} respectively.
(b) If H is a subgroup of a group G, one can consider the left cosets of H given by

$$
a H=\{a h: h \in H\} \subset G
$$

and the right cosets $H a=\{h a: h \in H\} \subset G$. A subgroup H is called normal if $a H=H a$ for every $a \in G$. If H is a normal subgroup of G, then show the set of all (left) cosets $G / H=\{a H: a \in G\}$ with operation $(a H)(b H)=(a b) H$ is a group. This group G / H is called the quotient group of G by (the normal subgroup) H.
(c) Show the kernel of a homomorphism is always a normal subgroup.
(d) If $\phi: G_{1} \rightarrow G_{2}$ is a homomorphism, then show $\operatorname{im}(\phi)$ and $G_{1} / \operatorname{ker}(\phi)$ are isomorphic groups. This is called the first homomorphism theorem.

