Solution of Problem 8 of Assignment 4A

Nazif Utku Demiroz

March 31, 2020

1 Introduction

We are asked to show that $d(x, y)=\|x-y\|$ defines a distance function on any normed vector space. This is called the norm induced metric. Thus, every normed space is a metric space.

For this problem, we have to show that $d(x, y)=\|x-y\|$ satisfies the properties of metric which are

- Positive Definite: $d(x, y)=0$ if and only if $x=y$
- Symmetry: $d(x, y)=d(y, x) \forall x, y \in X$
- Triangle Inequality: $d(x, y) \leq d(x, z)+d(z, y) \forall x, y, z \in X$
where X is a metric space.
In order to do this, we have to use the properties of the normed vector space which are
- positivity: $\|\mathbf{x}\| \geq 0$ and $\|\mathbf{x}\|=0$ if and only if $\mathbf{x}=0$
- homogeneity: $\|c \mathbf{x}\|=|c|\|x\|$, for any $c \in \mathbb{R}$
- triangle inequality: $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$
where \mathbf{x} is an element of the vector space V and $\|\cdot\|$ is defined as a mapping $V \longrightarrow \mathbb{R}$.

2 Solution

Positive Definiteness:

(\longrightarrow) If $x=y$, then $d(x, y)=d(x, x)=\|x-x\|=\|0\|=0$
(\longleftarrow) If $d(x, y)=0$ then, $\|x-y\|=0$. By the positivity property of the norm, $\|x-y\| \longrightarrow x-y=0 \longrightarrow x=y$

Symmetry :

$$
\begin{align*}
d(x, y) & =\|x-y\| \\
& =\|-(y-x)\| \tag{1}\\
& =|-1|| | y-x| | \text { by the homogeneity property } \\
& =d(y, x)
\end{align*}
$$

Triangle Inequality

$$
d(x, y)=\|x-y\|=\|x-z+z-y\| \leq\|x-z\|+\|z-y\|=d(x, z)+d(z, y)
$$

Therefore, $d(x, y)=\|x-y\|$ defines a distance function on any normed vector space.

