Solution of Problem 8 of Assignment 4A

Nazif Utku Demiroz

March 31, 2020

1 Introduction

We are asked to show that d(x, y) = ||x-y|| defines a distance function on any normed vector space. This is called the **norm induced metric**. Thus, every normed space is a metric space.

For this problem, we have to show that d(x, y) = ||x - y|| satisfies the properties of metric which are

- Positive Definite: d(x, y) = 0 if and only if x = y
- Symmetry: $d(x, y) = d(y, x) \ \forall \ x, y \in X$
- Triangle Inequality: $d(x, y) \le d(x, z) + d(z, y) \ \forall \ x, y, z \in X$

where X is a metric space.

In order to do this, we have to use the properties of the normed vector space which are

- positivity: $||\mathbf{x}|| \ge 0$ and $||\mathbf{x}|| = 0$ if and only if $\mathbf{x} = 0$
- homogeneity: $||c\mathbf{x}|| = |c|||x||$, for any $c \in \mathbb{R}$
- triangle inequality: $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$

where **x** is an element of the vector space V and $||\cdot||$ is defined as a mapping $V \longrightarrow \mathbb{R}$.

2 Solution

Positive Definiteness:

 (\longrightarrow) If x = y, then d(x, y) = d(x, x) = ||x - x|| = ||0|| = 0 (\longleftarrow) If d(x, y) = 0 then, ||x - y|| = 0. By the positivity property of the norm, $||x - y|| \longrightarrow x - y = 0 \longrightarrow x = y$

Symmetry :

$$d(x, y) = ||x - y||$$

= || - (y - x)||
= | - 1|||y - x|| by the homogeneity property
= d(y, x) (1)

Triangle Inequality

$$d(x,y) = ||x - y|| = ||x - z + z - y|| \le ||x - z|| + ||z - y|| = d(x,z) + d(z,y)$$

Therefore, d(x, y) = ||x - y|| defines a distance function on any normed vector space.