Math 4317, Self Assessment 3

Incompleteness of \mathbb{Q}
Let

$$
A=\left\{x \in \mathbb{Q}: x^{2} \leq 2\right\}
$$

where \mathbb{Q} denotes the rational numbers.

1. Show that if $b \in P=\{x \in \mathbb{Q}: x>0\}$ is positive and $b^{2}>2$ then b is not the least upper bound of A, i.e., find a rational number c which is an upper bound for A with $c<b$. Hint: You can use the fact that if $c \in P$ and $c^{2} \geq 2$, then c is an upper bound for A. (This was a problem on Self Assessment 2.)

Solution:

Pengfei Cheng gave the following elegant solution for this first question:
Since $b^{2}>2$, we know $b^{2}-2>0$, and we can find some $n \in \mathbb{N}$ such that

$$
b^{2}-2>\frac{1}{n} .
$$

Then the rational number

$$
c=b-\frac{1}{2 b n}
$$

satisfies

$$
c^{2}=\left(b-\frac{1}{2 b n}\right)^{2}=b^{2}-\frac{1}{n}+\frac{1}{4 b^{2} n^{2}} \geq b^{2}-\frac{1}{n}>2 .
$$

I would like to know how many of you can give a different solution along the following lines:
Let $c=b-1 / n$ where $n \in \mathbb{N}$ will be chosen later.
Can you show this c satisfies $c^{2}>2$ when n is large enough?

Also, there is an error in Pengfei's proof above. For extra credit: Find the error.

