Math 4317, Self Assessment 3

Incompleteness of \mathbb{Q}
Let

$$
A=\left\{x \in \mathbb{Q}: x^{2} \leq 2\right\}
$$

where \mathbb{Q} denotes the rational numbers.

1. Show that if $b \in P=\{x \in \mathbb{Q}: x>0\}$ is positive and $b^{2}>2$ then b is not the least upper bound of A, i.e., find a rational number c which is an upper bound for A with $c<b$. Hint: You can use the fact that if $c \in P$ and $c^{2} \geq 2$, then c is an upper bound for A. (This was a problem on Self Assessment 2.)I was able to do this.I was not able to do this.
$\square \quad$ I see how to do it now.I don't think I'll ever be able to understand this.I refuse to participate in self-assessment.
2. True or False: There exists an element $x \in \mathbb{Q}$ such that $x^{2}=2$.I was able to do this.I was not able to do this.I see how to do it now.I don't think I'll ever be able to understand this.
I refuse to participate in self-assessment.
