Incompleteness of $\mathbb Q$

Let

$$A = \{ x \in \mathbb{Q} : x^2 \le 2 \}$$

where \mathbb{Q} denotes the rational numbers.

1. Show that if $b \in P = \{x \in \mathbb{Q} : x > 0\}$ is positive and $b^2 > 2$ then b is **not** the least upper bound of A, i.e., find a rational number c which is an upper bound for A with c < b. Hint: You can use the fact that if $c \in P$ and $c^2 \ge 2$, then c is an upper bound for A. (This was a problem on Self Assessment 2.)

- \Box I was able to do this.
- \Box I was not able to do this.
 - \Box I see how to do it now.
 - \Box I don't think I'll ever be able to understand this.
- \Box I refuse to participate in self-assessment.
 - 2. True or False: There exists an element $x \in \mathbb{Q}$ such that $x^2 = 2$.

- \Box I was able to do this.
- \Box I was not able to do this.
 - \Box I see how to do it now.
 - \Box I don't think I'll ever be able to understand this.
- \Box I refuse to participate in self-assessment.