Assignment 1B Problem 13 Undergraduate Analysis, Spring 2020

John McCuan

March 10, 2020

I composed this solution after a correct and insightful solution was presented in class by Eliot Xing during the Spring 2020 semester. After seeing Eliot's solution, I felt that the way I was thinking about the problem was significantly different enough to write down my approach and make it available.

Here we are given a non-decreasing function $u: I \rightarrow \mathbb{R}$ defined on an interval I. The functions $u_{-}(x)=\sup u((-\infty, x))$ and $u_{+}(x)=\inf ((x, \infty))$ have been previously defined for points $x \in I$ for which there exist $a \in \mathbb{R}$ and $b \in \mathbb{R}$ with $a<x<b$ and $(a, b) \subset I$. From these the non-negative jump function

$$
\begin{equation*}
S(x)=u_{+}(x)-u_{-}(x) \tag{1}
\end{equation*}
$$

has been defined. This function has also been extended to all of I by noting that if $x \in I$ is a point at which S is not defined then there are exactly three possibilities:

1. $x=\min I$ and there is some $b \in \mathbb{R}$ such that $x<b$ and $[x, b) \subset I$. In this case, we can set $S(x)=u_{+}(x)-u(x)$.
2. $x=\max I$ and there is some $a \in \mathbb{R}$ such that $a<x$ and $(a, x] \subset I$. In this case, we can set $S(x)=u(x)-u_{-}(x)$.
3. $I=\{x\}=[x, x]$ is a singleton. In this case, we can set $S(x)=0$, but this is obviously not a very interesting case.

Let me mention (for future reference) that a somewhat more general approach may be taken in which $u_{-}(x)$ is defined by $u_{-}(x)=u(x)$ in the first case above, $u_{+}(x)=u(x)$ in the second case, and $u_{-}(x)=u_{+}(x)=u(x)$ in the last (uninteresting) case. Then, formula (1) may be used in all situations.

With these notions in place, we are asked to show the following:
(a) If $S(x)=0$, then for any $\epsilon>0$, there is some $\delta>0$ such that

$$
\left.\begin{array}{c}
|\xi-x|<\delta \tag{2}\\
\xi \in I
\end{array}\right\} \quad \Longrightarrow \quad|u(\xi)-u(x)|<\epsilon
$$

(b) Given $x \in I$ such that for any $\epsilon>0$ there is some δ for which (2) holds, then $S(x)=0$.

Proof of (a):

I'm going to change the notation a little bit and call the point in question x_{0} instead of x. This will free up the symbol x and we can avoid using ξ. Accordingly, we begin with the hypothesis

$$
\begin{equation*}
S\left(x_{0}\right)=0 \tag{3}
\end{equation*}
$$

Also, let us assume (BWOC) the assertion associated with (2) does not hold for $x=x_{0}$. For convenience, clarity, and future reference, let's restate that condition explicitly:

For any $\epsilon>0$, there is some $\delta>0$ such that

$$
\left.\begin{array}{c}
\left|x-x_{0}\right|<\delta \tag{4}\\
x \in I
\end{array}\right\} \quad \Longrightarrow \quad\left|u(x)-u\left(x_{0}\right)\right|<\epsilon
$$

If (4) does not hold, there is a fixed $\epsilon=\epsilon_{0}>0$ and there exist points $x_{j} \in I$ for $j=1,2,3, \ldots$ with

$$
\begin{equation*}
\left|x_{j}-x_{0}\right|<\frac{1}{j} \quad \text { and } \quad\left|u\left(x_{j}\right)-u\left(x_{0}\right)\right| \geq \epsilon_{0}>0 \tag{5}
\end{equation*}
$$

Clearly, $x_{j} \neq x_{0}$, so one of the sets

$$
\Gamma_{-}=\left\{j \in \mathbb{N}: x_{j}<x_{0}\right\} \quad \text { or } \quad \Gamma_{+}=\left\{j \in \mathbb{N}: x_{j}>x_{0}\right\}
$$

has cardinality \aleph_{0}, that is, one of these sets of indices is infinite and contains arbitrarily large natural numbers.

Note that if $j \in \Gamma_{-}$, then $x_{j}<x_{0}$ and $u\left(x_{j}\right)<u\left(x_{0}\right)$. It follows then that

$$
\begin{equation*}
\left|u\left(x_{j}\right)-u\left(x_{0}\right)\right|=u\left(x_{0}\right)-u\left(x_{j}\right) \geq \epsilon_{0} \quad \text { or } \quad u\left(x_{j}\right) \leq u\left(x_{0}\right)-\epsilon_{0} . \tag{6}
\end{equation*}
$$

Similarly, if $j \in \Gamma_{+}$, then $x_{0}<x_{j}$ and $u\left(x_{0}\right)<u\left(x_{j}\right)$, so

$$
u\left(x_{j}\right) \geq u\left(x_{0}\right)+\epsilon_{0} .
$$

If there are infinitely many indices in Γ_{-}, then for any $x<x_{0}$, there is some $x_{j}<x_{0}$ with $1 / j<x_{0}-x$ so that $x<x_{j}<x_{0}$. Thus, in view of (6)

$$
u(x) \leq u\left(x_{j}\right) \leq u\left(x_{0}\right)-\epsilon_{0} .
$$

It follows from the definition of the supremum in $u_{-}\left(x_{0}\right)$ that $u_{-}\left(x_{0}\right) \leq u\left(x_{0}\right)-\epsilon_{0}$. Since we have shown previously that $u\left(x_{0}\right) \leq u_{+}\left(x_{0}\right)$, this means

$$
S\left(x_{0}\right)=u_{+}\left(x_{0}\right)-u_{-}\left(x_{0}\right) \geq u\left(x_{0}\right)-\left[u\left(x_{0}\right)-\epsilon_{0}\right]=\epsilon_{0}>0 .
$$

This contradicts the hypothesis $S\left(x_{0}\right)=0$.
Similarly, if $\# \Gamma_{+}=\aleph_{0}$, then for any $u_{+}\left(x_{0}\right) \geq u\left(x_{0}\right)+\epsilon_{0}$ and $S\left(x_{0}\right)>\epsilon_{0}>0$ contradicting (3).

These contradictions establish the that (4) holds if $S\left(x_{0}\right)=0$.

Proof of (b):

Conversely, let us begin with the hypothesis (4) but assume (BWOC) that

$$
\begin{equation*}
S\left(x_{0}\right)=u_{+}\left(x_{0}\right)-u_{-}\left(x_{0}\right)>0 . \tag{7}
\end{equation*}
$$

Then, since we have shown previously that

$$
u_{-}\left(x_{0}\right) \leq u\left(x_{0}\right) \leq u_{+}\left(x_{0}\right),
$$

we must have

$$
u_{-}\left(x_{0}\right)<u\left(x_{0}\right) \quad \text { or } \quad u\left(x_{0}\right)<u_{+}\left(x_{0}\right) .
$$

Consider the case $u_{-}\left(x_{0}\right)<u\left(x_{0}\right)$. Then

$$
\epsilon_{0}=u\left(x_{0}\right)-u_{-}\left(x_{0}\right)>0 .
$$

In particular, this means

$$
I_{-}=\left\{x \in I: x<x_{0}\right\}=\left(-\infty, x_{0}\right) \cap I \neq \phi
$$

and for every $x \in I$ with $x<x_{0}$ we have

$$
u(x) \leq u_{-}\left(x_{0}\right)=u\left(x_{0}\right)-\left[u\left(x_{0}\right)-u_{-}\left(x_{0}\right)\right]=u\left(x_{0}\right)-\epsilon_{0} .
$$

It follows that for any $\delta>0$, there is some $x \in I_{-}$with $\left|x-x_{0}\right|=x_{0}-x<\delta$ and

$$
\left|u(x)-u\left(x_{0}\right)\right|=u\left(x_{0}\right)-u(x) \geq \epsilon_{0} .
$$

This contradicts (4).
Similarly, if $u\left(x_{0}\right)<u_{+}\left(x_{0}\right)$, then we may set $\epsilon_{0}=u_{-}\left(x_{0}\right)-u\left(x_{0}\right)>0$, and for any $\delta>0$, there is some $x>x_{0}$ with $x \in I$ and $\left|x-x_{0}\right|=x-x_{0}<\delta$ such that

$$
\left|u(x)-u\left(x_{0}\right)\right|=u(x)-u\left(x_{0}\right) \geq \epsilon_{0} .
$$

Again, we have contradicted our hypothesis (4), and these contradictions show that $S\left(x_{0}\right)=0$ according to the assertion of (b).

