Solution of Problem 14 from Assignment 2A Analysis I Spring 2020

John Mccuan

April 23, 2020

1 Introduction

Here is the original statement of the problem:

Consider $u_n : \mathbb{R} \to \mathbb{R}$ by

$$u_n(x) = \begin{cases} -1/n^2, & x < 1/n \\ 1/n^2, & x \ge 1/n \end{cases}$$
 for $n \in \mathbb{N}$.

1. Plot (draw the graph of)

$$f_k(x) = \sum_{n=1}^k u_n(x)$$

for k = 1, 2, 3, 4.

2. Does

$$f(x) = \sum_{n=1}^{\infty} u_n(x)$$

make sense as a non-decreasing function? If so what is the set of discontinuities of f?

2 Preliminaries

A previous problem asserts that if u and v are non-decreasing, then

 x_0 is a point of discontinuity for $u \implies x_0$ is a point of discontinuity for u + v

and

 x_0 is a point of continuity for u and $v \implies x_0$ is a point of continuity for u + v.

By induction these apply to finite sums of functions as follows: If $u_1, u_2, \ldots u_k$ are non-decreasing functions, then

 x_0 is a point of discontinuity for **any one of the functions** u_1, u_2, \ldots, u_k $\implies x_0$ is a point of discontinuity for $f_k = \sum_{j=1}^k u_j$

and

 x_0 is a point of continuity for **all of the functions** u_1, u_2, \ldots, u_k $\implies x_0$ is a point of continuity for $f_k = \sum_{j=1}^k u_j$.

3 Solution

Figure 1: Plots of f_1 and f_2

Let $n \in \mathbb{N}$ be fixed. Notice that for $x \ge 1/n$ and $j \ge n$, we know $u_j(x) = 1/j^2$. Thus, for k > n

$$f_k(x) = \sum_{j=1}^{n-1} u_j(x) + \sum_{j=n}^k \frac{1}{j^2}.$$
 (1)

In particular, $f_k(x) \leq f_{k+1}(x)$ for k > n. Therefore, either $\{f_k(x)\}_{k>n}$ is bounded above or not bounded above. We will show this sequence is bounded above:

$$\begin{split} \sum_{j=n}^{k} \frac{1}{j^2} &= \frac{1}{n^2} + \sum_{j=n+1}^{k} \frac{1}{j^2} \\ &\leq \frac{1}{n^2} + \sum_{j=n+1}^{k} \frac{1}{(j-1)j} \\ &= \frac{1}{n^2} + \sum_{j=n+1}^{k} \left(\frac{1}{j-1} - \frac{1}{j}\right) \\ &= \frac{1}{n^2} + \left(\frac{1}{n} - \frac{1}{n+1}\right) + \left(\frac{1}{n+1} - \frac{1}{n+2}\right) + \dots + \left(\frac{1}{k-1} - \frac{1}{k}\right) \\ &= \frac{1}{n^2} + \frac{1}{n} + \left(-\frac{1}{n+1} + \frac{1}{n+1}\right) + \left(-\frac{1}{n+2} + \frac{1}{n+2}\right) + \dots + \left(-\frac{1}{k-1} + \frac{1}{k-1}\right) - \frac{1}{k} \\ &= \frac{1}{n^2} + \frac{1}{n} - \frac{1}{k} \\ &\leq \frac{n+1}{n^2}. \end{split}$$

Since n is a fixed constant, so is $\sum_{j=1}^{n-1} u_j(x)$, and for $x \ge 1/n$ and k > n,

$$f_k(x) \le \sum_{j=1}^{n-1} u_j(x) + \frac{n+1}{n^2} < \infty.$$

Thus, for $x \ge 1/n$ the sum

$$f(x) = \sum_{j=1}^{\infty} u_j(x)$$
 is a finite number.

Since $n \in \mathbb{N}$ was arbitrary, f(x) is given by the same formula for x > 0. On the other hand, for x < 0, we know $u_j(x) = -1/j^2$ for all j. Thus, $f_{k+1}(x) < 0$ $f_k(x)$ and $\{f_k(x)\}_{k>n}$ is either bounded below or not bounded above. We will show this sequence is bounded below:

$$\begin{split} \sum_{j=1}^{k} u_j(x) &= -1 - \sum_{j=2}^{k} \frac{1}{j^2} \\ &\geq -1 - \sum_{j=2}^{k} \frac{1}{(j-1)j} \\ &= -1 - \sum_{j=2}^{k} \left(\frac{1}{j-1} - \frac{1}{j}\right) \\ &= -1 - \left(1 - \frac{1}{2}\right) - \left(\frac{1}{2} - \frac{1}{3}\right) - \dots - \left(\frac{1}{k-1} - \frac{1}{k}\right) \\ &= -2 + \left(\frac{1}{2} - \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{3}\right) + \dots + \left(\frac{1}{k-1} - \frac{1}{k-1}\right) + \frac{1}{k} \\ &= -2 + \frac{1}{k} \\ &\geq -2. \end{split}$$

This means that for $x \leq 0$, not only do we know

$$f(x) = \sum_{j=1}^{\infty} u_j(x) = -\sum_{j=1}^{\infty} \frac{1}{j^2}$$
 is a finite number,

but we also know f takes only this constant value on $(-\infty, 0]$. In particular, f is continuous at each x < 0. Let's write the negative real number¹ f(0) as $f(0) = -\pi/6$. More generally, for each $n \in \mathbb{N}$ and $x \ge 1/n$ the value of f(x) may be expressed as

$$f(x) = \sum_{j=1}^{n-1} u_j(x) + \sum_{j=n}^{\infty} \frac{1}{j^2} = \sum_{j=1}^{n-1} u_j(x) + \frac{\pi(n)}{6}$$
(2)

where $\pi(n)$ is the unique well-defined positive number given by

$$\pi(n) = 6\sum_{j=n}^{\infty} \frac{1}{j^2} \le \pi(1) = \pi$$

¹To prove $\sum_{j=1}^{\infty} 1/j^2 = \pi/6$ is called **the Basel Problem** after the city of Basel in Switzerland where Euler and the Bernoulli's were from. For our purposes, we can just introduce π here as a symbol to denote $6\sum_{j=1}^{\infty} 1/j^2 = f(1)$ which we have shown is a well-defined finite positive real number.

where equality holds only for n = 1.

Notice that for x > 0, we can take $n \in \mathbb{N}$ with $1/n \leq x$ so that by (1)

$$f(x) \ge f_k(x) = \sum_{j=1}^{n-1} u_j(x) + \sum_{j=n}^k \frac{1}{j^2} \ge \sum_{j=1}^{n-1} u_j(x) \ge -\sum_{j=1}^{n-1} \frac{1}{j^2} > -\frac{\pi}{6} = f(0).$$

Also, if $0 < x_1 < x_2$, then we may take $n \in \mathbb{N}$ with $1/n \leq x_1$ so that

$$f(x_1) = \sum_{j=1}^{n-1} u_j(x_1) + \frac{\pi(n)}{6} \le \sum_{j=1}^{n-1} u_j(x_2) + \frac{\pi(n)}{6} = f(x_2)$$

since $\sum_{j=1}^{n-1} u_j$ is a finite sum of non-decreasing functions. We have now verified that $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} -\pi/6, & x \le 0\\ \sum_{j=1}^{\infty} u_j(x), & x > 0 \end{cases}$$

is a well-defined non-decreasing function which is continuous at each point x with x < 0.

We claim next that f is continuous at x = 0. Notice that since $\pi(n) > 0$, the expression (2) gives us an estimate for f(x) for each $n \ge 1/x$, namely

$$f(x) \le f(1/n) < \sum_{j=1}^{n-1} u_j(1/n) = -\sum_{j=1}^{n-1} \frac{1}{j^2}.$$

Let $\epsilon > 0$. Taking *n* large enough so that

$$-\sum_{j=1}^{n-1}\frac{1}{j^2} < -\frac{\pi}{6} + \epsilon,$$

we can take $\delta = 1/n > 0$. Then for $|x| < \delta$,

$$|f(x) - f(0)| \le f(|x|) + \frac{\pi}{6} < \epsilon.$$

Thus, f is continuous at x = 0. We claim, finally, that f is discontinuous precisely on the set

$$\Gamma = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}.$$

In particular, $f \in C^0(\mathbb{R}\backslash\Gamma)$. The key idea to see this is already evident in Figure 1, but we will illustrate it again in the case k = 4 in accord with the instructions of the problem:

Figure 2: Plots of f_3 (solid) and f_4 (dashed). The basic/important idea here is that when you add u_k to f_{k-1} , in this case u_4 to f_3 , every value $f_k(x)$ for $x \ge 1/k$ is precisely equal to $f_{k-1}(x)$ plus a constant. In fact, for $x \ge 1/k$ we have $f_k(x) = f_{k-1}(x)+1/k^2$. In the figure it may be observed that for $x \ge 1/4$, we have $f_4(x)+1/16$. Consequently, all points of continuity for f_{k-1} are points of continuity for f_k ; all points of discontinuity for f_{k-1} are points of continuity for f_k . This idea carries over to the infinite sum because f(x) for x > 1/k is also presisely equal to $f_{k-1}(x)$ plus a constant.

For any $x_0 > 0$, let $n \in \mathbb{N} \setminus \{1\}$ with $1/n < x_0$. Then according to (2) for any $x \ge 1/n$,

$$f(x) = \sum_{j=1}^{n-1} u_j(x) + \frac{\pi(n)}{6}.$$
(3)

Notice that the function $g : \mathbb{R} \to \mathbb{R}$ given by

$$g(x) = \sum_{j=1}^{n-1} u_j(x) + \frac{\pi(n)}{6}$$

is a finite sum of non-decreasing functions with discontinuities precisely in the set $\Gamma_n = \{1, 1/2, \ldots, 1/n - 1\}$. Note well, that the functions f and g are not equal for all $x \in \mathbb{R}$, but they are equal for $x \ge 1/n$. In particular, if $x_0 \in \Gamma_n$, then

$$\sup\{f(x) : x < x_0\} = \sup\{g(x) : x < x_0\} < \inf\{g(x) : x > x_0\} = \inf\{f(x) : x > x_0\},\$$

so f has a discontinuity at x_0 . Similarly, if $x_0 \notin \Gamma_n$, then for any $\epsilon > 0$, we can take $\delta_1 > 0$ with $x_0 - \delta_1 > 1/n$ so that for every $x \in \mathbb{R}$ with $|x - x_0| < \delta_1$, we have²

$$x > x_0 - \delta_1 > 1/n,$$

and (3) holds. By continuity of the function g, we can take $\delta > 0$ with $\delta < \delta_1$ such that

 $|x - x_0| < \delta \qquad \Longrightarrow \qquad |g(x) - g(x_0)| < \epsilon.$

Equivalently, we could say

$$\sup\{g(x) : x < x_0\} = \inf\{g(x) : x > x_0\}.$$

Either way, for x with $|x - x_0| < \delta$, we know f(x) = g(x), so

$$|x - x_0| < \delta \qquad \Longrightarrow \qquad |f(x) - f(x_0)| < \epsilon$$

and

$$\sup\{f(x) : x < x_0\} = \inf\{f(x) : x > x_0\}.$$

That is, f is continuous at x_0 .

²If $x \le x_0 - \delta_1$, then $x_0 - x \ge \delta_1 > 0$, so $|x - x_0| = x_0 - x \ge \delta_1$ which is a contradiction.