Solution of Problem 14 from Assignment 2A Analysis I Spring 2020

John Mccuan

April 23, 2020

1 Introduction

Here is the original statement of the problem:
Consider $u_{n}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
u_{n}(x)=\left\{\begin{aligned}
-1 / n^{2}, & x<1 / n \\
1 / n^{2}, & x \geq 1 / n
\end{aligned} \quad \text { for } n \in \mathbb{N} .\right.
$$

1. Plot (draw the graph of)

$$
f_{k}(x)=\sum_{n=1}^{k} u_{n}(x)
$$

for $k=1,2,3,4$.
2. Does

$$
f(x)=\sum_{n=1}^{\infty} u_{n}(x)
$$

make sense as a non-decreasing function? If so what is the set of discontinuities of f ?

2 Preliminaries

A previous problem asserts that if u and v are non-decreasing, then x_{0} is a point of discontinuity for $u \Longrightarrow x_{0}$ is a point of discontinuity for $u+v$
and
x_{0} is a point of continuity for u and $v \Longrightarrow x_{0}$ is a point of continuity for $u+v$.
By induction these apply to finite sums of functions as follows: If $u_{1}, u_{2}, \ldots u_{k}$ are non-decreasing functions, then
x_{0} is a point of discontinuity for any one of the functions $u_{1}, u_{2}, \ldots, u_{k}$

$$
\Longrightarrow \quad x_{0} \text { is a point of discontinuity for } f_{k}=\sum_{j=1}^{k} u_{j}
$$

and
x_{0} is a point of continuity for all of the functions $u_{1}, u_{2}, \ldots, u_{k}$

$$
\Longrightarrow \quad x_{0} \text { is a point of continuity for } f_{k}=\sum_{j=1}^{k} u_{j}
$$

3 Solution

Figure 1: Plots of f_{1} and f_{2}
Let $n \in \mathbb{N}$ be fixed. Notice that for $x \geq 1 / n$ and $j \geq n$, we know $u_{j}(x)=1 / j^{2}$. Thus, for $k>n$

$$
\begin{equation*}
f_{k}(x)=\sum_{j=1}^{n-1} u_{j}(x)+\sum_{j=n}^{k} \frac{1}{j^{2}} \tag{1}
\end{equation*}
$$

In particular, $f_{k}(x) \leq f_{k+1}(x)$ for $k>n$. Therefore, either $\left\{f_{k}(x)\right\}_{k>n}$ is bounded above or not bounded above. We will show this sequence is bounded above:

$$
\begin{aligned}
\sum_{j=n}^{k} \frac{1}{j^{2}} & =\frac{1}{n^{2}}+\sum_{j=n+1}^{k} \frac{1}{j^{2}} \\
& \leq \frac{1}{n^{2}}+\sum_{j=n+1}^{k} \frac{1}{(j-1) j} \\
& =\frac{1}{n^{2}}+\sum_{j=n+1}^{k}\left(\frac{1}{j-1}-\frac{1}{j}\right) \\
& =\frac{1}{n^{2}}+\left(\frac{1}{n}-\frac{1}{n+1}\right)+\left(\frac{1}{n+1}-\frac{1}{n+2}\right)+\cdots+\left(\frac{1}{k-1}-\frac{1}{k}\right) \\
& =\frac{1}{n^{2}}+\frac{1}{n}+\left(-\frac{1}{n+1}+\frac{1}{n+1}\right)+\left(-\frac{1}{n+2}+\frac{1}{n+2}\right)+\cdots+\left(-\frac{1}{k-1}+\frac{1}{k-1}\right)-\frac{1}{k} \\
& =\frac{1}{n^{2}}+\frac{1}{n}-\frac{1}{k} \\
& \leq \frac{n+1}{n^{2}}
\end{aligned}
$$

Since n is a fixed constant, so is $\sum_{j=1}^{n-1} u_{j}(x)$, and for $x \geq 1 / n$ and $k>n$,

$$
f_{k}(x) \leq \sum_{j=1}^{n-1} u_{j}(x)+\frac{n+1}{n^{2}}<\infty
$$

Thus, for $x \geq 1 / n$ the sum

$$
f(x)=\sum_{j=1}^{\infty} u_{j}(x) \quad \text { is a finite number. }
$$

Since $n \in \mathbb{N}$ was arbitrary, $f(x)$ is given by the same formula for $x>0$.
On the other hand, for $x<0$, we know $u_{j}(x)=-1 / j^{2}$ for all j. Thus, $f_{k+1}(x)<$ $f_{k}(x)$ and $\left\{f_{k}(x)\right\}_{k>n}$ is either bounded below or not bounded above. We will show
this sequence is bounded below:

$$
\begin{aligned}
\sum_{j=1}^{k} u_{j}(x) & =-1-\sum_{j=2}^{k} \frac{1}{j^{2}} \\
& \geq-1-\sum_{j=2}^{k} \frac{1}{(j-1) j} \\
& =-1-\sum_{j=2}^{k}\left(\frac{1}{j-1}-\frac{1}{j}\right) \\
& =-1-\left(1-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{3}\right)-\cdots-\left(\frac{1}{k-1}-\frac{1}{k}\right) \\
& =-2+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{k-1}-\frac{1}{k-1}\right)+\frac{1}{k} \\
& =-2+\frac{1}{k} \\
& \geq-2
\end{aligned}
$$

This means that for $x \leq 0$, not only do we know

$$
f(x)=\sum_{j=1}^{\infty} u_{j}(x)=-\sum_{j=1}^{\infty} \frac{1}{j^{2}} \quad \text { is a finite number, }
$$

but we also know f takes only this constant value on $(-\infty, 0]$. In particular, f is continuous at each $x<0$. Let's write the negative real number ${ }^{1} f(0)$ as $f(0)=-\pi / 6$. More generally, for each $n \in \mathbb{N}$ and $x \geq 1 / n$ the value of $f(x)$ may be expressed as

$$
\begin{equation*}
f(x)=\sum_{j=1}^{n-1} u_{j}(x)+\sum_{j=n}^{\infty} \frac{1}{j^{2}}=\sum_{j=1}^{n-1} u_{j}(x)+\frac{\pi(n)}{6} \tag{2}
\end{equation*}
$$

where $\pi(n)$ is the unique well-defined positive number given by

$$
\pi(n)=6 \sum_{j=n}^{\infty} \frac{1}{j^{2}} \leq \pi(1)=\pi
$$

[^0]where equality holds only for $n=1$.
Notice that for $x>0$, we can take $n \in \mathbb{N}$ with $1 / n \leq x$ so that by (1)
$$
f(x) \geq f_{k}(x)=\sum_{j=1}^{n-1} u_{j}(x)+\sum_{j=n}^{k} \frac{1}{j^{2}} \geq \sum_{j=1}^{n-1} u_{j}(x) \geq-\sum_{j=1}^{n-1} \frac{1}{j^{2}}>-\frac{\pi}{6}=f(0) .
$$

Also, if $0<x_{1}<x_{2}$, then we may take $n \in \mathbb{N}$ with $1 / n \leq x_{1}$ so that

$$
f\left(x_{1}\right)=\sum_{j=1}^{n-1} u_{j}\left(x_{1}\right)+\frac{\pi(n)}{6} \leq \sum_{j=1}^{n-1} u_{j}\left(x_{2}\right)+\frac{\pi(n)}{6}=f\left(x_{2}\right)
$$

since $\sum_{j=1}^{n-1} u_{j}$ is a finite sum of non-decreasing functions. We have now verified that $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}-\pi / 6, & x \leq 0 \\ \sum_{j=1}^{\infty} u_{j}(x), & x>0\end{cases}
$$

is a well-defined non-decreasing function which is continuous at each point x with $x<0$.

We claim next that f is continuous at $x=0$. Notice that since $\pi(n)>0$, the expression (2) gives us an estimate for $f(x)$ for each $n \geq 1 / x$, namely

$$
f(x) \leq f(1 / n)<\sum_{j=1}^{n-1} u_{j}(1 / n)=-\sum_{j=1}^{n-1} \frac{1}{j^{2}} .
$$

Let $\epsilon>0$. Taking n large enough so that

$$
-\sum_{j=1}^{n-1} \frac{1}{j^{2}}<-\frac{\pi}{6}+\epsilon
$$

we can take $\delta=1 / n>0$. Then for $|x|<\delta$,

$$
|f(x)-f(0)| \leq f(|x|)+\frac{\pi}{6}<\epsilon
$$

Thus, f is continuous at $x=0$. We claim, finally, that f is discontinuous precisely on the set

$$
\Gamma=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}
$$

In particular, $f \in C^{0}(\mathbb{R} \backslash \Gamma)$. The key idea to see this is already evident in Figure 1, but we will illustrate it again in the case $k=4$ in accord with the instructions of the problem:

Figure 2: Plots of f_{3} (solid) and f_{4} (dashed). The basic/important idea here is that when you add u_{k} to f_{k-1}, in this case u_{4} to f_{3}, every value $f_{k}(x)$ for $x \geq 1 / k$ is precisely equal to $f_{k-1}(x)$ plus a constant. In fact, for $x \geq 1 / k$ we have $f_{k}(x)=$ $f_{k-1}(x)+1 / k^{2}$. In the figure it may be observed that for $x \geq 1 / 4$, we have $f_{4}(x)+1 / 16$. Consequently, all points of continuity for f_{k-1} are points of continuity for f_{k}; all points of discontinuity for f_{k-1} are points of continuity for f_{k}. This idea carries over to the infinite sum because $f(x)$ for $x>1 / k$ is also presisely equal to $f_{k-1}(x)$ plus a constant.

For any $x_{0}>0$, let $n \in \mathbb{N} \backslash\{1\}$ with $1 / n<x_{0}$. Then according to (2) for any $x \geq 1 / n$,

$$
\begin{equation*}
f(x)=\sum_{j=1}^{n-1} u_{j}(x)+\frac{\pi(n)}{6} . \tag{3}
\end{equation*}
$$

Notice that the function $g: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
g(x)=\sum_{j=1}^{n-1} u_{j}(x)+\frac{\pi(n)}{6}
$$

is a finite sum of non-decreasing functions with discontinuities precisely in the set $\Gamma_{n}=\{1,1 / 2, \ldots, 1 / n-1\}$. Note well, that the functions f and g are not equal for all $x \in \mathbb{R}$, but they are equal for $x \geq 1 / n$. In particular, if $x_{0} \in \Gamma_{n}$, then $\sup \left\{f(x): x<x_{0}\right\}=\sup \left\{g(x): x<x_{0}\right\}<\inf \left\{g(x): x>x_{0}\right\}=\inf \left\{f(x): x>x_{0}\right\}$,
so f has a discontinuity at x_{0}. Similarly, if $x_{0} \notin \Gamma_{n}$, then for any $\epsilon>0$, we can take $\delta_{1}>0$ with $x_{0}-\delta_{1}>1 / n$ so that for every $x \in \mathbb{R}$ with $\left|x-x_{0}\right|<\delta_{1}$, we have ${ }^{2}$

$$
x>x_{0}-\delta_{1}>1 / n,
$$

and (3) holds. By continuity of the function g, we can take $\delta>0$ with $\delta<\delta_{1}$ such that

$$
\left|x-x_{0}\right|<\delta \quad \Longrightarrow \quad\left|g(x)-g\left(x_{0}\right)\right|<\epsilon
$$

Equivalently, we could say

$$
\sup \left\{g(x): x<x_{0}\right\}=\inf \left\{g(x): x>x_{0}\right\}
$$

Either way, for x with $\left|x-x_{0}\right|<\delta$, we know $f(x)=g(x)$, so

$$
\left|x-x_{0}\right|<\delta \quad \Longrightarrow \quad\left|f(x)-f\left(x_{0}\right)\right|<\epsilon
$$

and

$$
\sup \left\{f(x): x<x_{0}\right\}=\inf \left\{f(x): x>x_{0}\right\}
$$

That is, f is continuous at x_{0}.

[^1]
[^0]: ${ }^{1}$ To prove $\sum_{j=1}^{\infty} 1 / j^{2}=\pi / 6$ is called the Basel Problem after the city of Basel in Switzerland where Euler and the Bernoulli's were from. For our purposes, we can just introduce π here as a symbol to denote $6 \sum_{j=1}^{\infty} 1 / j^{2}=f(1)$ which we have shown is a well-defined finite positive real number.

[^1]: ${ }^{2}$ If $x \leq x_{0}-\delta_{1}$, then $x_{0}-x \geq \delta_{1}>0$, so $\left|x-x_{0}\right|=x_{0}-x \geq \delta_{1}$ which is a contradiction.

