A characterization of domain of beta-divergence and its connection to Bregman-divergence

Series: 
Applied and Computational Mathematics Seminar
Monday, February 26, 2018 - 2:00pm
1 hour (actually 50 minutes)
Location: 
Skiles 005
,  
Korea University of Technology and Education
Organizer: 

Bio: Hyenkyun Woo is an assistant professor at KOREATECH (Korea University of Technology and Education). He got a Ph.D at Yonsei university. and was a post-doc at Georgia Tech and Korea Institute of Advanced Study and others.

In machine learning and signal processing, the beta-divergence is well known as a similarity measure between two positive objects. However, it is unclear whether or not the distance-like structure of beta-divergence is preserved, if we extend the domain of the beta-divergence to the negative region. In this article, we study the domain of the beta-divergence and its connection to the Bregman-divergence associated with the convex function of Legendre type. In fact, we show that the domain of beta-divergence (and the corresponding Bregman-divergence) include negative region under the mild condition on the beta value. Additionally, through the relation between the beta-divergence and the Bregman-divergence, we can reformulate various variational models appearing in image processing problems into a unified framework, namely the Bregman variational model. This model has a strong advantage compared to the beta-divergence-based model due to the dual structure of the Bregman-divergence. As an example, we demonstrate how we can build up a convex reformulated variational model with a negative domain for the classic nonconvex problem, which usually appears in synthetic aperture radar image processing problems.