Seminars and Colloquia by Series

Thursday, August 30, 2018 - 15:05 , Location: Skiles 006 , Andrew Nobel , University of North Carolina, Chapel Hill , Organizer: Mayya Zhilova
Tuesday, June 12, 2018 - 15:05 , Location: Skiles 006 , Jean-Christophe Breton , University of Rennes , Organizer: Mayya Zhilova
Random balls models are collections of Euclidean balls whose centers and radii are generated by a Poisson point process. Such collections model various contexts ranging from imaging to communication network. When the distributions driving the centers and the radii are heavy-tailed, interesting interference phenomena occurs when the model is properly zoomed-out. The talk aims to illustrate such phenomena and to give an overview of the asymptotic behavior of functionals of interest. The limits obtained include in particular stable fields, (fractional) Gaussian fields and Poissonian bridges. Related questions will also be discussed. 
Wednesday, June 6, 2018 - 15:30 , Location: Skiles 006 , Sarah Koch , U Michigan , Organizer: Dan Margalit
Given two complex polynomials, we can try to mathematically paste them together to obtain a rational function through a procedure known as mating the polynomials. In this talk, we will begin by trying to understand the "shape" of complex polynomials in general. We will then discuss the mating of two quadratic polynomials: we explore examples where the mating does exist, and examples where it does not. There will be lots of movies and exploration in this talk. 
Wednesday, May 23, 2018 - 14:00 , Location: Skiles 006 , Bulent Tosun , University of Alabama , Organizer: John Etnyre

This will be a 90 minute seminar

It is well known that all contact 3-manifolds can be obtained from the standard contact structure on the 3-sphere by contact surgery on a Legendrian link. Hence, an interesting and much studied question asks what properties are preserved under various types of contact surgeries. The case for the negative contact surgeries is fairly well understood. In this talk, we will discuss some new results about positive contact surgeries and in particular completely characterize when contact r surgery is symplectically/Stein fillable when r is in (0,1]. This is joint work with James Conway and John Etnyre.
Series: PDE Seminar
Thursday, May 3, 2018 - 15:00 , Location: Skiles 005 , Jason Murphy , Missouri University of Science and Technology , , Organizer:
The ground state solution to the nonlinear Schrödinger equation (NLS) is a global, non-scattering solution that often provides a threshold between scattering and blowup.  In this talk, we will discuss new, simplified proofs of scattering below the ground state threshold (joint with B. Dodson) in both the radial and non-radial settings.
Wednesday, May 2, 2018 - 14:00 , Location: Skiles 006 , Hyunki Min , Georgia Tech , , Organizer:
Understanding contact structures on hyperbolic 3-manifolds is one of the major open problems in the area of contact topology. As a first step, we try to classify tight contact structures on a specific hyperbolic 3-manifold. In this talk, we will review the previous classification results and classify tight contact structures on the Weeks manifold, which has the smallest hyperbolic volume. Finally, we will discuss how to generalize this method to classify tight contact structures on some other hyperbolic 3-manifolds.
Monday, April 30, 2018 - 15:05 , Location: Skiles 006 , John Dever , Georgia Tech , Organizer: John Dever
We provide a new definition of a local walk dimension beta that depends only on the metric. Moreover, we study the local Hausdorff dimension and prove that any variable Ahlfors regular measure of variable dimension Q is strongly equivalent to the local Hausdorff measure with Q the local Hausdorff dimension, generalizing the constant dimensional case. Additionally, we provide constructions of several variable dimensional spaces, including a new example of a variable dimensional Sierpinski carpet. We use the local exponent beta in time-scale renormalization of discrete time random walks, that are approximate at a given scale in the sense that the expected jump size is the order of the space scale. We consider the condition that the expected time to leave a ball scales like the radius of the ball to the power beta of the center. We then study the Gamma and Mosco convergence of the resulting continuous time approximate walks as the space scale goes to zero. We prove that a non-trivial Dirichlet form with Dirichlet boundary conditions on a ball exists as a Mosco limit of approximate forms. We also prove tightness of the associated continuous time processes.
Monday, April 30, 2018 - 14:00 , Location: Skiles 006 , Michael Harrison , Lehigh University , , Organizer: Mohammad Ghomi
The h-principle is a powerful tool in differential topology which is used to study spaces of functionswith certain distinguished properties (immersions, submersions, k-mersions, embeddings, free maps, etc.). Iwill discuss some examples of the h-principle and give a neat proof of a special case of the Smale-HirschTheorem, using the "removal of singularities" h-principle technique due to Eliashberg and Gromov. Finally, I willdefine and discuss totally convex immersions and discuss some h-principle statements in this context.
Friday, April 27, 2018 - 15:05 , Location: Skiles 271 , Bhanu Kumar , GTMath , Organizer: Jiaqi Yang
This talk follows Chapter 4 of the well known text by Guckenheimer and Holmes. It is intended to present the theorems on averaging for systems with periodic perturbation, but slow evolution of the solution. Also, a discussion of Melnikov’s method for finding persistence of homoclinic orbits and periodic orbits will also be given. Time permitting, an application to the circular restricted three body problem may also be included. 
Friday, April 27, 2018 - 15:00 , Location: Skiles 202 , Brian Kennedy , School of Physics, Georgia Tech , Organizer: Michael Loss
Electrons possess both spin and charge. In one dimension, quantum theory predicts that systems of interacting electrons may behave as though their charge and spin are transported at different speeds.We discuss examples of how  such many-particle effects may be simulated using neutral atoms and radiation fields. Joint work with Xiao-Feng Shi