Seminars and Colloquia by Series

Thursday, April 19, 2018 - 11:00 , Location: Skiles 006 , Tim Austin , UCLA Mathematics Department , Organizer: Mayya Zhilova
This talk is about the structure theory of measure-preserving systems: transformations of a finite measure space that preserve the measure. Many important examples arise from stationary processes in probability, and simplest among these are the i.i.d. processes. In ergodic theory, i.i.d. processes are called Bernoulli shifts. Some of the main results of ergodic theory concern an invariant of systems called their entropy, which turns out to be intimately related to the existence of `structure preserving' maps from a general system to Bernoulli shifts. I will give an overview of this area and its history, ending with a recent advance in this direction. A measure-preserving system has the weak Pinsker property if it can be split, in a natural sense, into a direct product of a Bernoulli shift and a system of arbitrarily low entropy. The recent result is that all ergodic measure-preserving systems have this property. This talk will assume graduate-level real analysis and measure theory, and familiarity with the basic language of random variables. Past exposure to entropy, measure-theoretic probability or ergodic theory will be helpful, but not essential.  
Tuesday, April 10, 2018 - 11:00 , Location: Skiles 006 , Prof. Oded Margalit , CTO, IBM Cybersecurity Center of Excellence, Beer Sheva, Israel , Organizer: Lutz Warnke

[CV: Prof. Oded Margalit has a PhD in computer science from Tel Aviv University under the supervision of Prof. Zvi Galil. He has worked at IBM Research – Haifa in the areas of machine learning, constraint satisfaction, verification, and more. Currently, he is the CTO of the IBM Cybersecurity Center of Excellence in Beer Sheva, Israel. Oded helps organize several computer science competitions, like the international IEEEXtreme and the Israeli national CodeGuru competition. He loves riddles and authors the IBM Research monthly challenge corner Ponder This.]

For the sake of puzzle-lovers worldwide, IBM Research offers a monthly mathematical challenge known as Ponder This. Every month, a new challenge is posted together with the solution for the previous month's riddle. Prof. Oded Margalit has served as the Ponder This puzzlemaster for the last decade. In this talk, he’ll survey some of most interesting riddles posted over the years, and tell some anecdotes about various challenges and regular solvers, such as one person who sent in his solution from an intensive care unit. Several challenges have led to conference and journal papers, such as a PRL paper born from a riddle on random walks, and an ITA 2014 paper on a water hose model (using quantum entanglement to break location-based encryption). Other monthly challenges have riffed on games such as 2048, Kakuro, an infinite chess game, the probability of backgammon ending with a double, Fischer Random Chess, and more. Other challenges have been more purely mathematic, focusing on minimal hash functions, combinatorial test design, or finding a natural number n such that round ((1+2 cos(20))^n) is divisible by 10^9. The talk will present a still-open question about a permutation-firing cannon. The talk will be self contained.
Thursday, March 8, 2018 - 11:00 , Location: Skiles 006 , Santosh Vempala , Georgia Institute of Technology, College of Computing, ISYE, Math , Organizer: Mayya Zhilova
The KLS conjecture says that the Cheeger constant of any logconcave density is achieved to within a universal, dimension-independent constant factor by a hyperplane-induced subset. Here we survey the origin and consequences of the conjecture (in geometry, probability, information theory and algorithms) and present recent progress resulting in the current best bound, as well as a tight bound for the log-Sobolev constant (both with Yin Tat Lee). The conjecture has led to several techniques of general interest.  
Friday, March 2, 2018 - 11:00 , Location: Skiles 006 , Jill Pipher , Brown University , Organizer: Mayya Zhilova
The regularity properties of solutions to linear partial differential equations in domains depend on the structure of the equation, the degree of smoothness of the coefficients of the equation, and of the boundary of the domain. Quantifying this dependence is a classical problem, and modern techniques can answer some of these questions with remarkable precision. For both physical and theoretical reasons, it is important to consider partial differential equations with non-smooth coefficients. We’ll discuss how some classical tools in harmonic and complex analysis have played a central role in answering questions in this subject at the interface of harmonic analysis and PDE.
Thursday, February 22, 2018 - 11:00 , Location: Skiles 006 , Robert Hough , Stony Brook University , Organizer: Mayya Zhilova
A distinct covering system of congruences is a finite collection of arithmetic progressions $$a_i \bmod m_i, \qquad 1 < m_1 < m_2 < \cdots < m_k.$$Erdős asked whether the least modulus of a distinct covering system of congruences can be arbitrarily large.  I will discuss my proof that minimum modulus is at most $10^{16}$, and recent joint work with Pace Nielsen, in which it is proven that every distinct covering system of congruences has a modulus divisible by either 2 or 3.
Thursday, February 15, 2018 - 11:00 , Location: Skiles 006 , Leonid Bunimovich , GT , , Organizer:
Evolution of random systems as well as dynamical systems with chaotic (stochastic) behavior traditionally (and seemingly naturally) is described by studying only asymptotic in time (when time tends to infinity) their properties. The corresponding results are formulated in the form of various limit theorems (CLT, large deviations, etc). Likewise basically all the main notions (entropy, Lyapunov exponents, etc) involve either taking limit when time goes to infinity or averaging over an infinite time interval. Recently a series of results was obtained demonstrating that finite time predictions for such systems are possible. So far the results are on the intersection of dynamical systems, probability and combinatorics. However, this area suggests some new analytical, statistical and geometric problems to name a few, as well as opens up possibility to obtain new types of results in various applications. I will describe the results on (extremely) simple examples which will make this talk  quite accessible.
Tuesday, January 16, 2018 - 11:05 , Location: Skiles 006 , Ivan Corwin , Columbia University , , Organizer: Michael Damron
The probability of outcomes of repeated fair coin tosses can be computed exactly using binomial coefficients. Performing asymptotics on these formulas uncovers the Gaussian distribution and the first instance of the central limit theorem. This talk will focus on higher version of this story. We will consider random motion subject to random forcing. By leveraging structures from representation theory and quantum integrable systems we can compute the analogs of binomial coefficients and extract new and different asymptotic behaviors than those of the Gaussian. This model and its analysis fall into the general theory of "integrable probability".
Friday, December 8, 2017 - 16:00 , Location: Skiles 006 , Emmy Murphy , Northwestern University , Organizer: Mayya Zhilova
Associated to a planar cubic graph, there is a closed surface in R^5, as defined by Treumann and Zaslow. R^5 has a canonical geometry, called a contact structure, which is compatible with the surface. The data of how this surface interacts with the geometry recovers interesting data about the graph, notably its chromatic polynomial. This also connects with pseudo-holomorphic curve counts which have boundary on the surface, and by looking at the resulting differential graded algebra coming from symplectic field theory, we obtain new definitions of n-colorings which are strongly non-linear as compared to other known definitions. There are also relationships with SL_2 gauge theory, mathematical physics, symplectic flexibility, and holomorphic contact geometry. During the talk we'll explain the basic ideas behind the various fields above, and why these various concepts connect.
Thursday, November 2, 2017 - 11:05 , Location: Skiles 006 , Joel Spencer , Courant Institute, New York University , Organizer: Lutz Warnke
Traditional Erdos Magic (a.k.a. The Probabilistic Method) proves the existence of an object with certain properties by showing that a random (appropriately defined) object will have those properties with positive probability. Modern Erdos Magic analyzes a random process, a random (CS take note!) algorithm. These, when successful, can find a "needle in an exponential haystack" in polynomial time. We'll look at two particular examples, both involving a family of n-element sets under suitable side conditions. The Lovasz Local Lemma finds a coloring with no set monochromatic. A result of this speaker finds a coloring with low discrepency. In both cases the original proofs were not implementable but Modern Erdos Magic finds the colorings in polynomial times. The methods are varied. Basic probability and combinatorics. Brownian Motion. Semigroups. Martingales. Recursions ... and Tetris!
Thursday, October 5, 2017 - 11:05 , Location: Skiles 005 , Yuri Kifer , Hebrew University , Organizer: