Minors of graphs of large path-width

Dissertation Defense
Tuesday, January 9, 2018 - 14:00
1 hour (actually 50 minutes)
Skiles 005
Math, GT
Let P be a graph with a vertex v such that P-v is a forest and let Q be an outerplanar graph. In 1993 Paul Seymour asked if every two-connected graph of sufficiently large path-width contains P or Q as a minor.mDefine g(H) as the minimum number for which there exists a positive integer p(H) such that every g(H)-connected H-minor-free graph has path-width at most p(H). Then g(H) = 0 if and only if H is a forest and there is no graph H with g(H) = 1, because path-width of a graph G is the maximum of the path-widths of its connected components.Let A be the graph that consists of a cycle (a_1,a_2,a_3,a_4,a_5,a_6,a_1) and extra edges a_1a_3, a_3a_5, a_5a_1. Let C_{3,2} be a graph of 2 disjoint triangles. In 2014 Marshall and Wood conjectured that a graph H does not have K_{4}, K_{2,3}, C_{3,2} or A as a minor if and only if g(H) >= 2. In this thesis we answer Paul Seymour's question in the affirmative and prove Marshall and Wood's conjecture, as well as extend the result to three-connected and four-connected graphs of large path-width. We introduce ``cascades", our main tool, and prove that in any tree-decomposition with no duplicate bags of bounded width of a graph of big path-width there is an ``injective" cascade of large height. Then we prove that every 2-connected graph of big path-width and bounded tree-width admits a tree-decomposition of bounded width and a cascade with linkages that are minimal. We analyze those minimal linkages and prove that there are essentially only two types of linkage. Then we convert the two types of linkage into the two families of graphs P and Q. In this process we have to choose the ``right'' tree decomposition to deal with special cases like a long cycle. Similar techniques are used for three-connected and four-connected graphs with high path-width.