Seminars and Colloquia by Series

Dispersive properties of surface water waves

Series
CDSNS Colloquium
Time
Monday, April 6, 2009 - 16:30 for 2 hours
Location
Skiles 255
Speaker
Vera Mikyoung HurMIT
I will speak on the dispersive character of waves on the interface between vacuum and water under the influence of gravity and surface tension. I will begin by giving a precise account of the formulation of the surface water-wave problem and discussion of its distinct features. They include the dispersion relation, its severe nonlinearity, traveling waves and the Hamiltonian structure. I will describe the recent work of Hans Christianson, Gigliola Staffilani and myself on the local smoothing effect of 1/4 derivative for the fully nonlinear problem under surface tension with some detail of the proof. If time permits, I will explore some open questions regarding long-time behavior and stability.

On capacity allocation in queueing networks

Series
CDSNS Colloquium
Time
Monday, March 30, 2009 - 16:30 for 2 hours
Location
Skiles 255
Speaker
Ton DiekerISyE, Georgia Tech
Allocation of service capacity ('staffing') at stations in queueing networks is both of fundamental and practical interest. Unfortunately, the problem is mathematically intractable in general and one therefore typically resorts to approximations or computer simulation. This talk describes work in progress with M. Squillante and S. Ghosh (IBM Research) on an algorithm that serves as an approximation for the 'best' capacity allocation rule. The algorithm can be interpreted as a discrete-time dynamical system, and we are interested in uniqueness of a fixed point and in convergence properties. No prior knowledge on queueing networks will be assumed.

Local entropy theory

Series
CDSNS Colloquium
Time
Monday, March 23, 2009 - 16:30 for 2 hours
Location
Skiles 255
Speaker
Xiangdong YeUniversity of Science and Technology of China
In this talk we will review results on local entropy theory for the past 15 years, introduce the current development and post some open questions for the further study.

On the theory and applications of the longtime dynamics of 3-dimensional fluid flows on thin domains

Series
CDSNS Colloquium
Time
Friday, March 13, 2009 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
George SellUniversity of Minnesota
The current theory of global attractors for the Navier-Stokes equations on thin 3D domains is motivated by the desire to better understand the theory of heat transfer in the oceans of the Earth. (In this context, the thinness refers to the aspect ratio - depth divided by expanse - of the oceans.) The issue of heat transfer is, of course, closely connected with many of the major questions concerning the climate. In order to exploit the tools of modern dynamical systems in this study, one needs to know that the global attractors are "good" in the sense that the nonlinearities are Frechet differentiable on these attractors. About 20 years ago, it was discovered that on certain thin 3D domains, the Navier-Stokes equations did possess good global attractors. This discovery, which was itself a major milestone in the study of the 3D Navier-Stokes equations, left open the matter of extending the theory to cover oceanic-like regions with the appropriate physical boundary behavior. In this lecture, we will review this theory, and the connections with climate modeling, while placing special emphasis on the recent developments for fluid flows with the Navier (or slip) boundary conditions

A homology theory for hyperbolic dynamical systems

Series
CDSNS Colloquium
Time
Thursday, March 12, 2009 - 11:05 for 1.5 hours (actually 80 minutes)
Location
Skiles 269
Speaker
Ian F. Putnam U. Victoria, BC, Canada
Motivated by Smale's work on smooth dynamical systems, David Ruelle introduced the notion of Smale spaces. These are topological dynamical systems which are hyperbolic in the sense of having local coordinates of contracting and expending directions. These include hyperbolic automorphisms of tori, but typically, the spaces involved have a fractal nature. An important subclass are the shifts of finite type which are symbolic systems described by combinatorial data. These are also precisely the Smale spaces which are totally disconnected. Rufus Bowen showed that every Smale space is the image of shift of finite type under a finite-to-one factor map. In the 1970's, Wolfgang Krieger introduced a beautiful invariant for shifts of finite type. The aim of this talk is to show how a refined version of Bowen's theorem may be used to extend Krieger's invariant to all (irreducible) Smale spaces. The talk will assume no prior knowledge of these topics - we begin with a discussion of Smale spaces and shifts of finite type and then move on to Krieger's invariant and its extension.

Fluctuation Theorems

Series
CDSNS Colloquium
Time
Monday, March 9, 2009 - 16:30 for 2 hours
Location
Skiles 255
Speaker
Mark PollicottUniversity of Warwick
The Cohen-Gallavotti Fluctuation theorem is a result describing the behaviour of simple hyperbolic dynamical systems. It was introduced to illustrate, in a somewhat simpler context, anomalies in the second law of thermodynamics. I will describe the mathematical formulation of this Fluctuation Theorem, and some variations on it.

Stability of collisionless plasmas

Series
CDSNS Colloquium
Time
Monday, February 23, 2009 - 16:30 for 2 hours
Location
Skiles 255
Speaker
Zhiwu LinSchool of Mathematics, Georgia Tech
A plasma is a completed ionized gas. In many applications such as in nuclear fusion or astrophysical phenomena, the plasma has very high temperature and low density, thus collisions can be ignored. The standard kinetic models for a collisionless plasma are the Vlasov- Maxwell and Vlasov-Poisson systems. The Vlasov-Poisson system is also used to model galaxy dynamics, where a star plays the role of a particle. There exists infinitely many equilibria for Vlasov models and their stability is a very important issue in physics. I will describe some of my works on stability and instability of various Vlasov equilibria.

Permutation entropy - theory and applications

Series
CDSNS Colloquium
Time
Monday, February 16, 2009 - 16:30 for 2 hours
Location
Skiles 255
Speaker
Jose AmigoMiguel Hernández University, Spain
Permutation entropy was introduced as a complexity measure of time series. Formally, it replaces the symbol blocks in the definition of Shannon entropy by the so-called ordinal patterns –a digest of the ups-and-downs along a finite orbit in a totally ordered state space. Later, this concept was extended to self maps of n-dimensional intervals, in metric and topological versions. It can be proven that, under some assumptions, the metric and topological permutation entropy coincide with their corresponding conventional counterparts. Besides its use as an entropy estimator, permutation entropy has found some interesting applications. We will talk about the detection of determinism in noisy time series, and the recovery of the control parameter from the symbolic sequences of a unimodal map (which allows to cryptanalize some chaotic ciphers).

Influence of anti-viral drug treatments on evolution of HIV-1 pathogen

Series
CDSNS Colloquium
Time
Monday, February 9, 2009 - 16:30 for 2 hours
Location
Skiles 255
Speaker
Zhilan FengDepartment of Mathematics, Purdue University
Mathematical models are used to study possible impact of drug treatment of infections with the human immunodeficiency virus type 1 (HIV-1) on the evolution of the pathogen. Treating HIV-infected patients with a combination of several antiretroviral drugs usually contributes to a substantial decline in viral load and an increase in CD4+ T cells. However, continuing viral replication in the presence of drug therapy can lead to the emergence of drug-resistant virus variants, which subsequently results in incomplete viral suppression and a greater risk of disease progression. As different types of drugs (e.g., reverse transcriptase inhibitors,protease inhibitors and entry inhibitors) help to reduce the HIV replication at different stages of the cell infection, infection-age-structured models are useful to more realistically model the effect of these drugs. The model analysis will be presented and the results are linked to the biological questions under investigation. By demonstrating how drug therapy may influence the within host viral fitness we show that while a higher treatment efficacy reduces the fitness of the drug-sensitive virus, it may provide a stronger selection force for drug-resistant viruses which allows for a wider range of resistant strains to invade.

Binary Black Hole Simulations - Mission Accomplished(?)

Series
CDSNS Colloquium
Time
Monday, February 2, 2009 - 16:30 for 2 hours
Location
Skiles 255
Speaker
Pablo LagunaSchool of Physics, Georgia Tech
I will review results from binary black hole simulations and the role that these simulations have in astrophysics and gravitational wave observations. I will then focus on the mathematical and computational aspects of the recent breakthroughs in numerical relativity that have made finding binary black hole solutions to the Einstein field equations an almost routine exercise.

Pages