Seminars and Colloquia by Series

Riemannian geometry and contact topology IV

Series
Geometry Topology Working Seminar
Time
Friday, April 12, 2024 - 14:00 for 2 hours
Location
Skiles 006
Speaker
John EtnyreGeorgia Tech

This series of talks will discuss connections between Riemannian geometry and contact topology. Both structures have deep connections to the topology of 3-manifolds, but there has been little study of the interactions between them (at least the implications in contact topology). We will see that there are interesting connections between curvature and properties of contact structures. The talks will give a brief review of both Riemannian geometry and contact topology and then discuss various was one might try to connect them. There will be many open problems discussed (probably later in the series). 

Riemannian geometry and contact topology III

Series
Geometry Topology Working Seminar
Time
Friday, April 5, 2024 - 14:00 for 2 hours
Location
Skiles 006
Speaker
John EtnyreGeorgia Tech

This series of talks will discuss connections between Riemannian geometry and contact topology. Both structures have deep connections to the topology of 3-manifolds, but there has been little study of the interactions between them (at least the implications in contact topology). We will see that there are interesting connections between curvature and properties of contact structures. The talks will give a brief review of both Riemannian geometry and contact topology and then discuss various was one might try to connect them. There will be many open problems discussed (probably later in the series). 

Riemannian geometry and contact topology II

Series
Geometry Topology Working Seminar
Time
Friday, March 15, 2024 - 14:00 for 2 hours
Location
Skiles 006
Speaker
John EtnyreGeorgia Tech

This series of talks will discuss connections between Riemannian geometry and contact topology. Both structures have deep connections to the topology of 3-manifolds, but there has been little study of the interactions between them (at least the implications in contact topology). We will see that there are interesting connections between curvature and properties of contact structures. The talks will give a brief review of both Riemannian geometry and contact topology and then discuss various was one might try to connect them. There will be many open problems discussed (probably later in the series). 

Riemannian geometry and contact topology

Series
Geometry Topology Working Seminar
Time
Friday, March 8, 2024 - 14:00 for 2 hours
Location
Skiles 006
Speaker
John EtnyreGeorgia Tech

This series of talks will discuss connections between Riemannian geometry and contact topology. Both structures have deep connections to the topology of 3-manifolds, but there has been little study of the interactions between them (at least the implications in contact topology). We will see that there are interesting connections between curvature and properties of contact structures. The talks will give a brief review of both Riemannian geometry and contact topology and then discuss various was one might try to connect them. There will be many open problems discussed (probably later in the series). 

Electromagnetism and Falling Cats II

Series
Geometry Topology Working Seminar
Time
Friday, October 20, 2023 - 14:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 006
Speaker
Daniel IrvineGeorgia Institute of Technology

In this talk I will continue to develop a parallel between the classical field theory of electromagnetism and geometric mechanics of animal locomotion. The focus of the previous talk was on electromagnetism, and the focus of this talk will be on the geometric mechanics of animal locomotion. We will investigate the aphorism that a cat dropped (from a safe height) upside-down always lands on her feet. I will explain how non-trivial topology of the configuration space of the cat can act as a "source" of locomotion.

No prior knowledge of classical field theory will be assumed. I will rely on some results from part 1, but I will review the relevant definitions.

Electromagnetism and Falling Cats

Series
Geometry Topology Working Seminar
Time
Friday, September 22, 2023 - 14:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 006
Speaker
Daniel IrvineGeorgia Institute of Technology

In this talk I will develop a parallel between the classical field theory of electromagnetism and geometric mechanics of animal locomotion. I will illustrate this parallel using some informative examples from the two disciplines. In the realm of electromagnetism, we will investigate the magnetic monopole, as classically as possible. In the realm of animal locomotion, we will investigate the aphorism that a cat dropped (from a safe height) upside-down always lands on her feet. It turns out that both of these phenomena are caused by the presence of non-trivial topology.

No prior knowledge of classical field theory will be assumed, and this talk may continue into a second session at a later date.

Constructing Exotic 4-manifolds

Series
Geometry Topology Working Seminar
Time
Friday, April 21, 2023 - 14:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 006
Speaker
Jon SimoneGeorgia Tech

This week, we'll continue discussing the rational blowdown and use it to construct small exotic 4-manifolds. We will see how we can view the rational blowdown as a "monodromy substitution." Finally, if time allows, we will discuss knot surgery on 4-manifolds. 

Lefschetz Fibrations and Exotic 4-Manifolds IV

Series
Geometry Topology Working Seminar
Time
Friday, April 14, 2023 - 14:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 006
Speaker
Nur SaglamGeorgia Tech

Lefschetz fibrations are very useful in the sense that they have one-one correspondence with the relations in the Mapping Class Groups and they can be used to construct exotic (homeomorphic but not diffeomorphic) 4-manifolds. In this series of talks, we will first introduce Lefschetz fibrations and Mapping Class Groups and give examples. Then, we will dive more into 4-manifold world. More specifically, we will talk about the history of  exotic 4-manifolds and we will define the nice tools used to construct exotic 4-manifolds, like symplectic normal connect sum, Rational Blow-Down, Luttinger Surgery, Branch Covers, and Knot Surgery. Finally, we will provide various constructions of exotic 4-manifolds.

Pages