Seminars and Colloquia by Series

The Almost Subadditivity of the Entropy on Kac’s Sphere

Series
Math Physics Seminar
Time
Wednesday, August 20, 2014 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Dr. Amit EinavUniversity of Cambridge, UK
It is an interesting well known fact that the relative entropy of the marginals of a density with respect to the Gaussian measure on Euclidean space satisfies a simple subadditivity property. Surprisingly enough, when one tries to achieve a similar result on the N-sphere a factor of 2 appears in the right hand side of the inequality (a result due to Carlen, Lieb and Loss), and this factor is sharp. Besides a deviation from the simple ``equivalence of ensembles principle'' in equilibrium Statistical Mechanics, this entropic inequality on the sphere has interesting ramifications in other fields, such as Kinetic Theory.In this talk we will present conditions on a density function on the sphere, under which we can get an ``almost'' subaditivity property; i.e. the factor 2 can be replaced with a factor that tends to 1 as the dimension of the sphere tends to infinity. The main tools for proving this result is an entropy conserving extension of the density from the sphere to Euclidean space together with a comparison of appropriate transportation distances such as the entropy, Fisher information and Wasserstein distance between the marginals of the original density and that of the extension. Time permitting, we will give an example that arises naturally in the investigation of the Kac Model.

Low-Rank Estimation of Smooth Kernels on Graphs

Series
Dissertation Defense
Time
Monday, July 21, 2014 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Pedro RangelSchool of Mathematics, Georgia Tech
This dissertation investigates the problem of estimating a kernel over a large graph based on a sample of noisy observations of linear measurements of the kernel. We are interested in solving this estimation problem in the case when the sample size is much smaller than the ambient dimension of the kernel. As is typical in high-dimensional statistics, we are able to design a suitable estimator based on a small number of samples only when the target kernel belongs to a subset of restricted complexity. In our study, we restrict the complexity by considering scenarios where the target kernel is both low-rank and smooth over a graph. The motivations for studying such problems come from various real-world applications like recommender systems and social network analysis. We study the problem of estimating smooth kernels on graphs. Using standard tools of non-parametric estimation, we derive a minimax lower bound on the least squares error in terms of the rank and the degree of smoothness of the target kernel. To prove the optimality of our lower-bound, we proceed to develop upper bounds on the error for a least-square estimator based on a non-convex penalty. The proof of these upper bounds depends on bounds for estimators over uniformly bounded function classes in terms of Rademacher complexities. We also propose a computationally tractable estimator based on least-squares with convex penalty. We derive an upper bound for the computationally tractable estimator in terms of a coherence function introduced in this work. Finally, we present some scenarios wherein this upper bound achieves a near-optimal rate.

Tightness and Legendrian surgery

Series
Geometry Topology Seminar
Time
Thursday, July 10, 2014 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Andy WandUniversity of Nantes
A well known result of Giroux tells us that isotopy classes ofcontact structures on a closed three manifold are in one to onecorrespondence with stabilization classes of open book decompositions ofthe manifold. We will introduce a characterization of tightness of acontact structure in terms of corresponding open book decompositions, andshow how this can be used to resolve the question of whether tightness ispreserved under Legendrian surgery.

Groebner bases for fields with valuations

Series
Algebra Seminar
Time
Monday, June 30, 2014 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Anders JensenAarhus University
In this talk we discuss a recent paper by Andrew Chan and Diane Maclagan on Groebner bases for fields, where the valuation of the coefficients is taken into account, when defining initial terms. For these orderings the usual division algorithm does not terminate, and ideas from standard bases needs to be introduced. Groebner bases for fields with valuations play an important role in tropical geometry, where they can be used to compute tropical varieties of a larger class of polynomial ideals than usual Groebner bases.

Linear Systems on Metric graphs and Some Applications to Tropical Geometry and Non-Archimedean Geometry

Series
Dissertation Defense
Time
Thursday, June 26, 2014 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ye LuoSchool of Mathematics, Georgia Tech
The work in this dissertation is mainly focused on three subjects which are essentially related to linear systems on metric graphs and its application: (1) rank-determining sets of metric graphs, which can be employed to actually compute the rank function of arbitrary divisors on an arbitrary metric graph, (2) a tropical convexity theory for linear systems on metric graphs, and (3) smoothing of limit linear series of rank one on refined metrized complex (an intermediate object between metric graphs and algebraic curves),

A Numerical Study of Vorticity-Enhanced Heat Transfer

Series
Dissertation Defense
Time
Tuesday, June 24, 2014 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Xiaolin WangSchool of Mathematics, Georgia Tech
In this work, we numerically studied the effect of the vorticity on the enhancement of heat transfer in a channel flow. Based on the model we proposed, we find that the flow exhibits different properties depending on the value of four dimensionless parameters. In particularly, we can classify the flows into two types, active and passive vibration, based on the sign of the incoming vortices. The temperature profiles according to the flow just described also show different characteristics corresponding to the active and passive vibration cases. In active vibration cases, we find that the heat transfer performance is directly related to the strength of the incoming vortices and the speed of the background flow. In passive vibration cases, the corresponding heat transfer process is complicated and varies dramatically as the flow changes its properties. Compared to the fluid parameters, we also find that the thermal parameters have much less effect on the heat transfer enhancement. Finally, we propose a more realistic optimization problem which is to minimize the maximum temperature of the solids with a given input energy. We find that the best heat transfer performance is obtained in the active vibration case with zero background flow.

Integral versions of Helly's theorem

Series
Combinatorics Seminar
Time
Tuesday, June 24, 2014 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jesús Antonio De LoeraUniversity of California at Davis
The famous Doignon-Bell-Scarf theorem is a Helly-type result about the existence of integer solutions on systems linear inequalities. The purpose of this paper is to present the following ``weighted'' generalization: Given an integer k, we prove that there exists a constant c(k,n), depending only on the dimension n and k, such that if a polyhedron {x : Ax <= b} contains exactly k integer solutions, then there exists a subset of the rows of cardinality no more than c(k,n), defining a polyhedron that contains exactly the same k integer solutions. We work on both upper and lower bounds for this constant. This is joint work with Quentin Louveaux, Iskander Aliev and Robert Bassett.

Open book foliations.

Series
Geometry Topology Student Seminar
Time
Tuesday, June 24, 2014 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 006.
Speaker
Amey KalotiGeorgia Tech.
We start studying open book foliations in this series of seminars. We will go through the theory and see how it is used in applications to contact topology.

An ODE associated to the Ricci flow

Series
Geometry Topology Seminar
Time
Monday, June 16, 2014 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Atreyee BhattacharyaIndian Institute Of Science
In this talk we will discuss an ODE associated to the evolution of curvature along the Ricci flow. We talk about the stability of certain fixed points of this ODE (up to a suitable normalization). These fixed points include curvature of a large class of symmetric spaces.

Pages