- Series
- Research Horizons Seminar
- Time
- Wednesday, April 3, 2019 - 12:05pm for 1 hour (actually 50 minutes)
- Location
- Skiles 006
- Speaker
- Leonid Bunimovich – Georgia Tech
- Organizer
- Trevor Gunn
Mathematical billiards naturally arise in mechanics, optics, acoustics, etc. They also form the most visual class of dynamical systems with evolution covering all the possible spectrum of behaviours from integrable (extremely regular) to strongly chaotic. Billiard is a (deterministic) dynamical system generated by an uniform (by inertia) motion of a point particle within a domain with piecewise smooth walls ("a billiard table"). I will introduce all needed notions on simple examples and outline some open problems. This talk is also a preparatory talk to a Mathematical Physics seminar (on Monday April 8) where a new direction of research will be discussed which consider physical billiards where instead of a point (mathematical) particle a real physical hard sphere moves. To a complete surprise of mathematicians and PHYSICISTS evolution of a billiard may completely change (and in different ways) in transition from mathematical to physical billiards. It a rare example when mathematicians surprise physicists. Some striking results with physicists are also already obtained. I will (again visually) explain at the end of RH why it is surprising that there could be difference between Math and Phys billiards.