0-concordance of 2-knots

Series
Geometry Topology Seminar
Time
Monday, February 13, 2017 - 2:00pm for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Nathan Sunukjian – Calvin College
Organizer
John Etnyre
A 2-knot is defined to be an embedding of S^2 in S^4. Unlike the theory of concordance for knots in S^3, the theory of concordance of 2-knots is trivial. This talk will be framed around the related concept of 0-concordance of 2-knots. It has been conjectured that this is also a trivial theory, that every 2-knot is 0-concordant to every other 2-knot. We will show that this conjecture is false, and in fact there are infinitely many 0-concordance classes. We'll in particular point out how the concept of 0-concordance is related to understanding smooth structures on S^4. The proof will involve invariants coming from Heegaard-Floer homology, and we will furthermore see how these invariants can be used shed light on other properties of 2-knots such as amphichirality and invertibility.