A new type of exceptional Laguerre polynomials

Series
Analysis Seminar
Time
Monday, March 10, 2014 - 2:00pm for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Conni Liaw – Baylor University
Organizer
Brett Wick
The Bochner Classification Theorem (1929) characterizes the polynomial sequences $\{p_n\}_{n=0}^\infty$, with $\deg p_n=n$ that simultaneously form a complete set of eigenstates for a second order differential operator and are orthogonal with respect to a positive Borel measure having finite moments of all orders: Hermite, Laguerre, Jacobi and Bessel polynomials. In 2009, G\'{o}mez-Ullate, Kamran, and Milson found that for sequences $\{p_n\}_{n=1}^\infty$, with $\deg p_n=n$ (i.e.~without the constant polynomial) the only such sequences are the \emph{exceptional} Laguerre and Jacobi polynomials. They also studied two Types of Laguerre polynomial sequences which omit $m$ polynomials. We show the existence of a new "Type III" family of Laguerre polynomials and focus on its properties.