Rank-determining sets of metric graphs

Series
Graph Theory Seminar
Time
Thursday, October 8, 2009 - 12:05pm for 1.5 hours (actually 80 minutes)
Location
Skiles 255
Speaker
Ye Luo – Electrical and Computer Engineering, Georgia Tech
Organizer
Robin Thomas
A metric graph is a geometric realization of a finite graph by identifying each edge with a real interval. A divisor on a metric graph Gamma is an element of the free abelian group on Gamma. The rank of a divisor on a metric graph is a concept appearing in the Riemann-Roch theorem for metric graphs (or tropical curves) due to Gathmann and Kerber, and Mikhalkin and Zharkov. A rank-determining set of a metric graph Gamma is defined to be a subset A of Gamma such that the rank of a divisor D on Gamma is always equal to the rank of D restricted on A. I will present an algorithm to derive the reduced divisor from any effective divisor in the same linear system, and show constructively that there exist finite rank-determining sets. Based on this discovery, we can compute the rank of an arbitrary divisor on any metric graph. In addition, I will discuss the properties of rank-determining sets in general and formulate a criterion for rank-determining sets.