- Series
- CDSNS Colloquium
- Time
- Monday, February 9, 2009 - 4:30pm for 2 hours
- Location
- Skiles 255
- Speaker
- Zhilan Feng – Department of Mathematics, Purdue University
- Organizer
- Yingfei Yi
Mathematical models are used to study possible impact of drug treatment of infections with the human immunodeficiency virus type 1 (HIV-1) on the evolution of the pathogen. Treating HIV-infected patients with a combination of several antiretroviral drugs usually contributes to a substantial decline in viral load and an increase in CD4+ T cells. However, continuing viral replication in the presence of drug therapy can lead to the emergence of drug-resistant virus variants, which subsequently results in incomplete viral suppression and a greater risk of disease progression. As different types of drugs (e.g., reverse transcriptase inhibitors,protease inhibitors and entry inhibitors) help to reduce the HIV replication at different stages of the cell infection, infection-age-structured models are useful to more realistically model the effect of these drugs. The model analysis will be presented and the results are linked to the biological questions under investigation. By demonstrating how drug therapy may influence the within host viral fitness we show that while a higher treatment efficacy reduces the fitness of the drug-sensitive virus, it may provide a stronger selection force for drug-resistant viruses which allows for a wider range of resistant strains to invade.