- Series
- Geometry Topology Seminar
- Time
- Monday, September 19, 2022 - 2:00pm for 1 hour (actually 50 minutes)
- Location
- Speaker
- Abdalrazzaq (Abdul) Zalloum – University of Toronto
- Organizer
- Roberta Shapiro
Two of the most well-studied topics in geometric group theory are CAT(0) cube complexes and mapping class groups. This is in part because they both admit powerful combinatorial-like structures that encode their (coarse) geometry: hyperplanes for the former and curve graphs for the latter. In recent years, analogies between the two theories have become more apparent. For instance: there are counterparts of curve graphs for CAT(0) cube complexes and rigidity theorems for such counterparts that mirror the surface setting, and both can be studied using the machinery of hierarchical hyperbolicity. However, the considerably larger class of CAT(0) spaces is left out of this analogy, as the lack of a combinatorial-like structure presents a difficulty in importing techniques from those areas. In this talk, I will speak about recent work with Petyt and Spriano where we bring CAT(0) spaces into the picture by developing analogues of hyperplanes and curve graphs for them. The talk will be accessible to everyone, and all the aforementioned terms will be defined.