Multifidelity Scientific Machine Learning

Series
Applied and Computational Mathematics Seminar
Time
Monday, November 6, 2023 - 2:00pm for 1 hour (actually 50 minutes)
Location
Skiles 005 and https://gatech.zoom.us/j/98355006347 (to be confirmed)
Speaker
Dr. Panos Stinis – Pacific Northwest National Laboratory
Organizer
Molei Tao

Please Note: Speaker will present in person

In many applications across science and engineering it is common to have access to disparate types of data or models with different levels of fidelity. In general, low-fidelity data are easier to obtain in greater quantities, but it may be too inaccurate or not dense enough to accurately train a machine learning model. High-fidelity data is costly to obtain, so there may not be sufficient data to use in training, however, it is more accurate.  A small amount of high-fidelity data, such as from measurements or simulations, combined with low fidelity data, can improve predictions when used together. The important step in such constructions is the representation of the correlations between the low- and high-fidelity data. In this talk, we will present two frameworks for multifidelity machine learning. The first one puts particular emphasis on operator learning, building on the Deep Operator Network (DeepONet). The second one is inspired by the concept of model reduction. We will present the main constructions along with applications to closure for multiscale systems and continual learning. Moreover, we will discuss how multifidelity approaches fit in a broader framework which includes ideas from deep learning, stochastic processes, numerical methods, computability theory and renormalization of complex systems.