Work of Levin and Przytycki shows that if two non-special rational
functions f and g of degree $> 1 $over $\mathbb{C}$ share the same set of
preperiodic points, there are $m$, $n$, and $r$ such that $f^m g^n = f^r$.
In other words, $f$ and $g$ nearly commute. One might ask if there are
other sorts of relations non-special rational functions $f$ and $g$ over $\mathbb{C}$
might satisfy when they do not share the same set of preperiodic
points. We will present a recent proof of Beaumont that shows that
- You are here:
- Home