- Series
- Algebra Seminar
- Time
- Monday, October 2, 2017 - 3:00pm for 1 hour (actually 50 minutes)
- Location
- Skiles 006
- Speaker
- Elden Elmanto – Northwestern
- Organizer
- Kirsten Wickelgren

A classical theorem in modern homotopy theory states that functors from finite pointed sets to spaces satisfying certain conditions model infinite loop spaces (Segal 1974). This theorem offers a recognition principle for infinite loop spaces. An analogous theorem for Morel-Voevodsky's motivic homotopy theory has been sought for since its inception. In joint work with Marc Hoyois, Adeel Khan, Vladimir Sosnilo and Maria Yakerson, we provide such a theorem. The category of finite pointed sets is replaced by a category where the objects are smooth schemes and the maps are spans whose "left legs" are finite syntomic maps equipped with a K-theoretic trivialization of its contangent complex. I will explain what this means, how it is not so different from finite pointed sets and why it was a natural guess. In particular, I will explain some of the requisite algebraic geometry.Time permitting, I will also provide 1) an explicit model for the motivic sphere spectrum as a torsor over a Hilbert scheme and,2) a model for all motivic Eilenberg-Maclane spaces as simplicial ind-smooth schemes.