- Series
- Analysis Seminar
- Time
- Wednesday, April 11, 2012 - 2:00pm for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Vladimir Eiderman – University of Wisconsin
- Organizer
- Michael Lacey

This is a joint work with F.~Nazarov and A.~Volberg.Let $s\in(1,2)$, and let $\mu$ be a finite positive Borel measure in $\mathbb R^2$ with $\mathcal H^s(\supp\mu)<+\infty$. We prove that if the lower $s$-density of $\mu$ is+equal to zero $\mu$-a.~e. in $\mathbb R^2$, then$\|R\mu\|_{L^\infty(m_2)}=\infty$, where $R\mu=\mu\ast\frac{x}{|x|^{s+1}}$ and $m_2$ is the Lebesque measure in $\mathbb R^2$. Combined with known results of Prat and+Vihtil\"a, this shows that for any noninteger $s\in(0,2)$ and any finite positive Borel measure in $\mathbb R^2$ with $\mathcal H^s(\supp\mu)<+\infty$, we have+$\|R\mu\|_{L^\infty(m_2)}=\infty$.Also I will tell about the resent result of Ben Jaye, as well as about open problems.