- Series
- Applied and Computational Mathematics Seminar
- Time
- Monday, March 31, 2014 - 2:00pm for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Benjamin Seibold – Temple University
- Organizer
- Martin Short
Initially homogeneous vehicular traffic flow can become inhomogeneous
even in the absence of obstacles. Such ``phantom traffic jams'' can be
explained as instabilities of a wide class of ``second-order''
macroscopic traffic models. In this unstable regime, small
perturbations amplify and grow into nonlinear traveling waves. These
traffic waves, called ``jamitons'', are observed in reality and have
been reproduced experimentally. We show that jamitons are analogs of
detonation waves in reacting gas dynamics, thus creating an
interesting link between traffic flow, combustion, water roll waves,
and black holes. This analogy enables us to employ the Zel'dovich-von
Neumann-Doering theory to predict the shape and travel velocity of the
jamitons. We furthermore demonstrate that the existence of jamiton
solutions can serve as an explanation for multi-valued parts that
fundamental diagrams of traffic flow are observed to exhibit.