Dynamics and Topology of Contact 3-Manifolds with negative $\alpha$-Sectional Curvature: Lecture 1

Geometry Topology Student Seminar
Wednesday, January 16, 2019 - 2:00pm for 1 hour (actually 50 minutes)
Skiles 006
Surena Hozoori – Georgia Institute of Technology – shozoori3@gatech.edu
Surena Hozoori
In this series of (3-5) lectures, I will talk about different aspects of a class of contact 3-manifolds for which geometry, dynamics and topology interact subtly and beautifully. The talks are intended to include short surveys on "compatibility", "Anosovity" and "Conley-Zehnder indices". The goal is to use the theory of Contact Dynamics to show that conformally Anosov contact 3-manifolds (in particular, contact 3-manifolds with negative $\alpha$-sectional curvature) are universally tight, irrducible and do not admit a Liouville cobordism to tight 3-sphere.