- Series
- Graph Theory Seminar
- Time
- Thursday, January 15, 2009 - 12:00pm for 1 hour (actually 50 minutes)
- Location
- Skiles 255
- Speaker
- Hein van der Holst – Eindhoven University of Technology
- Organizer
- Robin Thomas

Each graph can be embedded in 3-space. The problem becomes more interesting if we put restrictions on the type of embedding. For example, a linkless embedding of a graph is one where each pair of vertex-disjoint circuits has linking number equal to zero. The class of all graphs that have a linkless embedding is closed under taking minors. Robertson, Seymour, and Thomas gave the forbidden minors for this class of graphs. Open remained how to find a linkless embedding in polynomial time. In the talk we start with discussing an algorithm to find a linkless embedding.Instead of embedding the graph in 3-space, we could also consider mapping properties of certain superstructures of the graph in 3-space, and, indeed, if this superstructure has not the right mapping properties in 3-space, see whether it has the right one in 4-space, etc. Recently, we introduced for a graph G a new graph parameter \sigma(G), which is defined as the smallest d such that superstructures of G have a zero intersection mapping in d-space. The nicest property of this graph parameter is its independence of the superstructure and thus depends on the graph only. For d=2 and d=3, \sigma(G) \leq d if and only if G is outerplanar and planar, respectively. The graphs G with \sigma(G)\leq 4 are exactly those that have a linkless embedding. In the second part of the talk we will discuss this new graph parameter. (This part is joint work with R. Pendavingh.)