- Series
- Graph Theory Seminar
- Time
- Thursday, October 3, 2019 - 1:30pm for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Jie Ma – University of Science and Technology of China – http://staff.ustc.edu.cn/~jiema/
- Organizer
- Xingxing Yu

A graph is $k$-critical if its chromatic number is $k$ but any its proper subgraph has chromatic number less than $k$. Let $k\geq 4$. Gallai asked in 1984 if any $k$-critical graph on $n$ vertices contains at least $n$ distinct $(k-1)$-critical subgraphs. Improving a result of Stiebitz, Abbott and Zhou proved in 1995 that every such graph contains $\Omega(n^{1/(k-1)})$ distinct $(k-1)$-critical subgraphs. Since then no progress had been made until very recently, Hare resolved the case $k=4$ by showing that any $4$-critical graph on $n$ vertices contains at least $(8n-29)/3$ odd cycles. We mainly focus on 4-critical graphs and develop some novel tools for counting cycles of specified parity. Our main result shows that any $4$-critical graph on $n$ vertices contains $\Omega(n^2)$ odd cycles, which is tight up to a constant factor by infinite many graphs. As a crucial step, we prove the same bound for 3-connected non-bipartite graphs, which may be of independent interest. Using the tools, we also give a very short proof to the Gallai's problem for the case $k=4$. Moreover, we improve the longstanding lower bound of Abbott and Zhou to $\Omega(n^{1/(k-2)})$ for the general case $k\geq 5$. Joint work with Tianchi Yang.