- Series
- Mathematical Biology Seminar
- Time
- Wednesday, October 8, 2008 - 11:00am for 1 hour (actually 50 minutes)
- Location
- Skiles 255
- Speaker
- Dr. John Glasser – CDC/CCID/NCIRD
- Organizer
- Howie Weiss
Background: We endeavor to reproduce historical observations and to identify and remedy the cause of any disparate predictions before using models to inform public policy-making. We have no finely age- and time-stratified observations from historical pandemics, but prior exposure of older adults to a related strain is among the more compelling hypotheses for the w-shaped age-specific mortality characterizing the 1918 pandemic, blurring the distinction between annual and pandemic influenza.
Methods: We are attempting to reproduce patterns in annual influenza morbidity and mortality via a cross-classified compartmental model whose age class sojourns approximate the longevity of clusters of closely-related strains. In this population model, we represent effective inter-personal contacts via a generalization of Hethcote's formulation of mixing as a convex combination of contacts within and between age groups. Information about mixing has been sought in face-to-face conversations, a surrogate for contacts by which respiratory diseases might be transmitted, but could also be obtained from household and community transmission studies. We reanalyzed observations from several such studies to learn about age-specific preferences, proportions of contacts with others the same age. And we obtained age-specific forces of infection from proportions reporting illness in a prospective study of household transmission during the 1957 influenza pandemic, which we gamma distributed to correct for misclassification. Then we fit our model to weekly age-specific hospitalizations from Taiwan's National Health Insurance Program, 2000-07, by adjusting a) age-specific coefficients of harmonic functions by which we model seasonality and b) probabilities of hospitalization given influenza.
Results: While our model accounts for only 30% of the temporal variation in hospitalizations, estimated conditional probabilities resemble official health resource utilization statistics. Moreover, younger and older people are most likely to be hospitalized and elderly ones to die of influenza, with modeled deaths 10.6% of encoded influenza or pneumonia mortality.
Conclusions: Having satisfactorily reproduced recent patterns in influenza morbidity and mortality in Taiwan via a deterministic model, we will switch to a discrete event-time simulator and - possibly with different initial conditions and selected parameters - evaluate the sufficiency of projected pandemic vaccine production.
Joint work with Denis Taneri, and Jen-Hsiang Chuang