A modular framework for generalized Hurwitz class numbers

Series
Number Theory
Time
Wednesday, October 22, 2025 - 3:30pm for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Olivia Beckwith – Tulane University – obeckwith@tulane.eduhttps://www.olivia-beckwith.com
Organizer
Joshua Stucky

We explore the modular properties of generating functions for Hurwitz class numbers endowed with level structure. Our work is based on an inspection of the weight $\frac{1}{2}$ Maass--Eisenstein series of level $4N$ at its spectral point $s=\frac{3}{4}$, extending the work of Duke, Imamo\={g}lu and T\'{o}th in the level $4$ setting. We construct a higher level analogue of Zagier's Eisenstein series and a preimage under the $\xi_{\frac{1}{2}}$-operator.  We deduce a linear relation between the mock modular generating functions of the level $1$ and level $N$ Hurwitz class numbers, giving rise to a holomorphic modular form of weight $\frac{3}{2}$ and level $4N$ for $N > 1$ odd and square-free. Furthermore, we connect the aforementioned results to a regularized Siegel theta lift as well as a regularized Kudla--Millson theta lift for odd prime levels, which builds on earlier work by Bruinier, Funke and Imamo\={g}lu. I wil lbe discussing joint work with Andreas Mono and Ngoc Trinh Le.