- Series
- Other Talks
- Time
- Wednesday, November 14, 2018 - 4:00am for 1 hour (actually 50 minutes)
- Location
- Molecular Science and Engineering Building, Classroom G011
- Speaker
- Christopher Jarzynski – Director, Institute for Physical Science and Technology University of Maryland
- Organizer
- Rafael de la Llave
Thermodynamics
provides a robust conceptual framework and set
of laws that govern the exchange of energy and matter. Although these
laws were originally articulated for macroscopic objects, it is hard to
deny that nanoscale systems, as well, often exhibit “thermodynamic-like”
behavior. To what extent can the venerable
laws of thermodynamics be scaled down to apply to individual microscopic
systems, and what new features emerge at the nanoscale? I will review
recent progress toward answering these questions, with a focus on the
second law of thermodynamics. I will argue
that the inequalities ordinarily used to express the second law can be
replaced by stronger equalities, known as fluctuation relations, which
relate equilibrium properties to far-from-equilibrium fluctuations. The
discovery and experimental validation of these
relations has stimulated interest in the feedback control of small
systems, the closely related Maxwell demon paradox, and the
interpretation of the thermodynamic arrow of time. These developments
have led to new tools for the analysis of non-equilibrium experiments
and simulations, and they have refined our understanding of
irreversibility and the second law.
Bio
Chris
Jarzynski received an AB degree in physics from Princeton
University in 1987, and a PhD in physics from the University of
California, Berkeley in 1994. After postdoctoral positions at the
University of Washington in Seattle and at Los Alamos National
Laboratory in New Mexico, he became a staff member in the Theoretical
Division at Los Alamos. In 2006, he moved to the University of Maryland,
College Park, where he is now a Distinguished University Professor in
the Department of Chemistry and Biochemistry, with joint appointments in
the Institute for Physical Science and Technology
and the Department of Physics. His research is primarily in the area of
nonequilibrium statistical physics, where he has contributed to an
understanding of how the laws of thermodynamics apply to nanoscale
systems. He has been the recipient of a Fulbright Fellowship,
the 2005 Sackler Prize in the Physical Sciences, and the 2019 Lars
Onsager Prize in Theoretical Statistical Physics. He is a Fellow of the
American Physical Society and the American Academy of Arts and Sciences.
Contact: Professor Jennifer Curtis Email: jennifer.curtis@physics.gatech.edu