- Series
- Applied and Computational Mathematics Seminar
- Time
- Monday, October 24, 2016 - 2:05pm for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Prof. Lars Ruthotto – Emory University Math/CS
- Organizer
- Martin Short
Image registration is an essential task in almost all areas involving
imaging techniques. The goal of image registration is to find
geometrical correspondences between two or more images. Image
registration is commonly phrased as a variational problem that is known
to be ill-posed and thus regularization is commonly used to ensure
existence of solutions and/or introduce prior knowledge about the
application in mind. Many relevant applications, e.g., in biomedical
imaging, require that plausible transformations are diffeomorphic, i.e.,
smooth mappings with a smooth inverse.
This talk will present and compare two modeling strategies and numerical
approaches to diffeomorphic image registration. First, we will discuss
regularization approaches based on nonlinear elasticity. Second, we will
phrase image registration as an optimal control problem involving
hyperbolic PDEs which is similar to the popular framework of Large
Deformation Diffeomorphic Metric Mapping (LDDMM). Finally, we will
consider computational aspects and present numerical results for
real-life medical imaging problems.