Cortical Computation of Thresholds via Iterative Constructions

Series
ACO Student Seminar
Time
Friday, April 8, 2016 - 1:05pm for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Samantha Petti – Georgia Tech
Organizer
Yan Wang
Motivated by neurally feasible computation, we study Boolean functions of an arbitrary number of input variables that can be realized by recursively applying a small set of functions with a constant number of inputs each. This restricted type of construction is neurally feasible since it uses little global coordination or control. Valiant’s construction of a majority function can be realized in this manner and, as we show, can be generalized to any uniform threshold function. We study the rate of convergence, finding that while linear convergence to the correct function can be achieved for any threshold using a fixed set of primitives, for quadratic convergence, the size of the primitives must grow as the threshold approaches 0 or 1. We also study finite realizations of this process, and show that the constructions realized are accurate outside a small interval near the target threshold, where the size of the construction at each level grows as the inverse square of the interval width. This phenomenon, that errors are higher closer to thresholds (and thresholds closer to the boundary are harder to represent), is also a well-known cognitive finding. Finally, we give a neurally feasible algorithm that uses recursive constructions to learn threshold functions. This is joint work with Christos Papadimitriou and Santosh Vempala.