- Series
- School of Mathematics Colloquium
- Time
- Thursday, September 10, 2015 - 11:00am for 1 hour (actually 50 minutes)
- Location
- Skiles 006
- Speaker
- Prof. Dr. Hongkai Zhao – University of California, Irvine – zhao@math.uci.edu – http://www.math.uci.edu/~zhao/homepage/home/home.html
- Organizer
- Molei Tao
Approximate separable representation of the Green’s functions for
differential operators is a fundamental question in the analysis of
differential equations and development of efficient numerical
algorithms. It can reveal intrinsic complexity, e.g., Kolmogorov n-width
or degrees of freedom of the corresponding differential
equation. Computationally, being able to approximate a Green’s function
as a sum with few separable terms is equivalent to the existence of low
rank approximation of the discretized system which can be explored for
matrix compression and fast solution techniques such as in fast multiple
method and direct matrix inverse solver. In this talk, we will mainly
focus on Helmholtz equation in the high frequency limit for which we
developed a new approach to study the approximate separability of
Green’s function based on an geometric characterization of the relation
between two Green's functions and a tight dimension estimate for the
best linear subspace approximating a set of almost orthogonal vectors.
We derive both lower bounds and upper bounds and show their sharpness
and implications for computation setups that are commonly used
in practice. We will also make comparisons with other types of
differential operators such as coercive elliptic differential operator
with rough coefficients in divergence form and hyperbolic differential
operator. This is a joint work with Bjorn Engquist.