- Series
- ACO Student Seminar
- Time
- Friday, March 28, 2014 - 12:05pm for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Ioannis Panageas – Georgia Tech
- Organizer
- Emma Cohen
Since the 50s and Nash general proof of equilibrium existence in games it
is well understood
that even simple games may have many, even uncountably infinite, equilibria
with different properties.
In such cases a natural question arises, which equilibrium is the right one?
In this work, we perform average case analysis of evolutionary dynamics in
such cases of games.
Intuitively, we assign to each equilibrium a probability mass that is
proportional to the size of its
region of attraction. We develop new techniques to compute these
likelihoods for classic games
such as the Stag Hunt game (and generalizations) as well as balls-bins
games. Our proofs combine
techniques from information theory (relative entropy), dynamical systems
(center manifold theorem),
and algorithmic game theory.
Joint work with Georgios Piliouras