- Series
- Applied and Computational Mathematics Seminar
- Time
- Monday, November 4, 2013 - 2:05pm for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Chad Higdon-Topaz – Macalester College
- Organizer
- Martin Short
From bird flocks to ungulate herds to fish schools, nature abounds with
examples of biological aggregations that arise from social interactions.
These interactions take place over finite (rather than infinitesimal)
distances, giving rise to nonlocal models. In this modeling-based talk, I
will discuss two projects on insect swarms in which nonlocal social
interactions play a key role. The first project examines desert locusts.
The model is a system of nonlinear partial integrodifferential
equations of advection-reaction type. I find conditions for the
formation of an aggregation, demonstrate transiently traveling pulses of
insects, and find hysteresis in the aggregation's existence. The second
project examines the pea aphid. Based on experiments that motion track
aphids walking in a circular arena, I extract a discrete, stochastic
model for the group. Each aphid transitions randomly between a moving
and a stationary state. Moving aphids follow a correlated random walk.
The probabilities of motion state transitions, as well as the random
walk parameters, depend strongly on distance to an aphid’s nearest
neighbor. For large nearest neighbor distances, when an aphid is
isolated, its motion is ballistic and it is less likely to stop. In
contrast, for short nearest neighbor distances, aphids move diffusively
and are more likely to become stationary; this behavior constitutes an
aggregation mechanism.